Topology and Algorithms on Combinatorial Maps

Vincent Despré

Gipsa-lab, G-scop, Labex Persyval

18 Octobre 2016

Vincent DESPRE

Introduction
The Notion of
Surface

Topology Combinatorial Maps

Splitting Cycles

The Problem Experimenta Approach

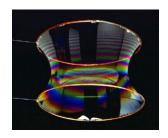
The Key Poi

Encoding Toroidal Triangulations

Triangulation
Planar Case
Torus Case

Geometric Intersection Number of Curves

The Problem The Results



Vincent DESPRE

Introduction

The Notion of Surface

O---his-t-vi-l Mass

Splitting Cycles

The Pro

Experimen

Approach

T1 D

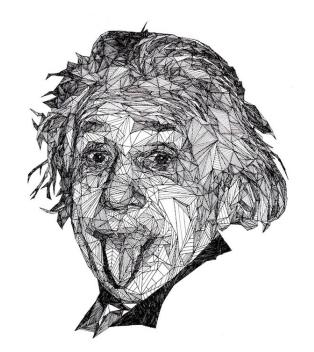
Encoding Toroidal Triangulations

Planar Case

Planar Case Torus Case

Intersection Number of Curves

The Problem



Vincent DESPRE

Introduction
The Notion of

Topology

Combinatorial Maps

Splitting Cycles

The Problem Experimenta Approach

The Key Po

Encoding Toroidal

Triangulations
Planar Case
Torus Case

Geometric Intersection Number of Curves

The Problem

Topology

Number of

V=number of vertices, E=number of edges and F=number of faces

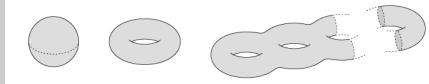
Euler Formula

On a surface that can be deformed to a sphere, any polygonal subdivision verifies:

$$\chi(S) = V - E + F = 2$$

Topology

Number of



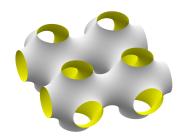
Euler Formula

On a surface S of genus g, any polygonal subdivision verifies:

$$\chi(S) = V - E + F = 2 - 2g$$

Topology

Number of



Euler Formula

On a surface S of genus g with b boundaries, any polygonal subdivision verifies:

$$\chi(S) = V - E + F = 2 - 2g - b$$

Combinatorial Maps

Cycles

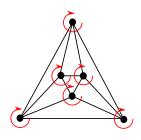
Triangulations Planar Case

Torus Case

Number of

Curves

The Results



Vincent DESPRE

Introduction

The Notion of Surface

Combinatorial Maps

Oombinatorial Wap

Cycles

The Problen

Experimenta

The Key Poi

The Resu

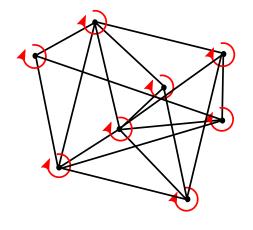
Toroidal

Triangulations

Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem



Vincent DESPRE

Introduction

Introduction

Surface

Combinatorial M

Splitting Cycles

The Problem

Experiment

The Key Po

The Res

Encoding Toroidal

Triangulations

Planar Case Torus Case

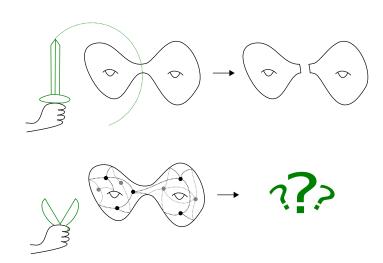
Geometric Intersection Number of

Curves
The Problem

The Result

Conclusion

Splitting Cycles



Vincent DESPRE

Introduction

Surface

Topology Combinatorial Ma

Splitting Cycles

The Problem

Experimenta Approach The Key Poi

The Res

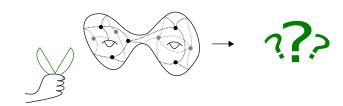
Toroidal
Triangulation

Triangulation
Planar Case
Torus Case

Geometric Intersection Number of Curves The Problem

Conclusion

Splitting Cycles



Cabello et al. (2011)

Deciding if a combiantorial map admits a splitting cycle is NP-complete.

Vincent DESPRE

Introduction

Surface

Combinatorial Ma

Splitting

Cycles
The Problem

Experimenta Approach

The Key Po

Encoding
Toroidal
Triangulation

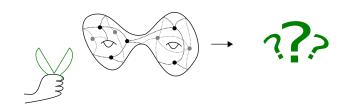
Triangulation
Planar Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion

Splitting Cycles



Barnette's Conjecture (1982)

Every triangulations of surfaces of genus at least 2 admit a splitting cycle.

PhD Deter

Vincent DESPRE

Introduction

Surface

Combinatorial Map

Splitting

The Problem
Experimental

Approach
The Key Poir

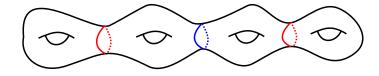
Encoding Toroidal

Triangulations
Planar Case

Geometric Intersection Number of Curves The Problem

1110 11000110

Conclusion



Conjecture (Mohar and Thomassen, 2001)

Every triangulations of surfaces of genus $g \ge 2$ admit a splitting cycle of every different type.

hD Defer

Vincent DESPRE

Introduction

Surface

Combinatorial Ma

Splittin Cycles

The Prob

Experimental Approach

The Key Po

The Res

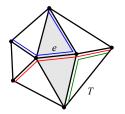
Encoding
Toroidal
Triangulation

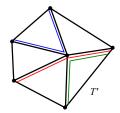
Triangulatio
Planar Case
Torus Case

Geometric Intersection Number of Curves

Conclusion

Irreducible Triangulations





- → There are a finite number of irreducible triangulations of genus g. (Barnette and Edelson, 1988 and Joret and Wood, 2010)
- → There are 396784 irreducible triangulations of genus 2.
- → Unreachable for genus 3.

Genus 2 irreducible triangulations

First implementation by Thom Sulanke.

Genus 2:

Number of triangulations: 396 784

n	3	4	5	6	7	8	Average
10		2	51	681	130	1	6.09
11	2	58	2249	16138	7818	11	6.21
12	25	1516	20507	72001	22877	121	6.00
13	710	13004	50814	78059	16609	9	5.61
14	8130	30555	12308	3328	205	1	4.21
15	36794	1395	3	1	2		3.04
16	661	3					3.01
17	5						3.00

Splitting
Cycles
The Problem

Experimental Approach The Key Point The Results

Toroidal
Triangulation:
Planar Case
Torus Case

Geometric Intersection Number of Curves

The Results

Vincent DESPRE

The Notion of

Topology Combinatorial Map

Splitting Cycles

Experimental Approach

The Key Poir

Encoding
Toroidal
Triangulation

Triangulations
Planar Case

Geometric Intersection Number of

The Problem

Conclusion

Genus 6

We consider the 59 non-isomorphic embeddings of K_{12} . (Altshuler, Bokowski and Schuchert 1996)

Average: 7.58 Worst-case: 8

A A A

Average: 9.41 Worst-case: 10

A A A A

Average: 10.32

Worst-case: 12 (Hamiltonian cycle!)

Conclusion

Complete Graphs

$$\chi(S) = v - e + f = n - \frac{n(n-1)}{2} + \frac{2}{3} \cdot \frac{n(n-1)}{2} = 2 - 2g$$

$$g = \frac{(n-3)(n-4)}{12}$$

$$(n-3)(n-4) \equiv 0 [12] \Leftrightarrow n \equiv 0, 3, 4 \text{ or } 7[12]$$

Theorem (Ringel and Youngs, ∼1970)

 K_n can triangulate a surface if and only if $n \equiv 0, 3, 4$ or 7[12].

Vincent DESPRE

The Notion of Surface Topology

Splitting Cycles

The Proble Experimen

The Key Point

The Results

Toroidal Triangulatio

Planar Case
Torus Case

Geometric Intersectio Number of Curves The Problem

Conclusion

Computation time

New implementation in C++. The data-structure used for the triangulations is the flag representation.

n	12	15	16	19
basic	2 s.	1 h.	12 h.	\sim 10 years

This has been computed with an 8 cores computer with 16 Go of RAM. It uses parallel computation.

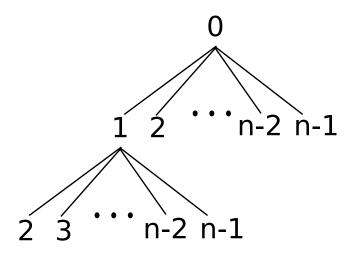
Cycles

The Key Point

Triangulations

Planar Case Torus Case

Number of Curves



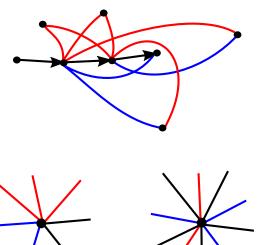
Cycles

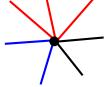
The Key Point

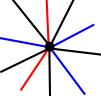
Triangulations

Planar Case Torus Case

Number of Curves







n	15	16	19	 43
basic	1 h.	12 h.	\sim 10 years	
final	2 s.	3 s.	8 sec.	1 h.

Vincent DESPRE

The Notion of Surface Topology

Splitting

The Probl

Approach
The Key Poir
The Results

Encoding Toroidal Triangulation

Triangulations
Planar Case
Torus Case

Geometric Intersection Number of Curves The Problem

Conclusion

Type K_n	K_{15}	K_{16}	K_{19}	K_{27}	K_{28}	K_{31}	K_{39}	K_{40}	K_{43}
1	8	10	11	12	12	8	12	10	8
2	11	12	14	16	17	13	15	15	11
3	12	14	16	19	18	15	20	18	12
4	13	16	18	20		17	24	19	15
5	14	16		27		20	26	24	18
6		16				21	30	26	20
7						23	32	28	21
8					1	24	1	30	23
9						28		33	24
10						28		35	25
11						29		36	27
12								38	29
13								40	30
14						T			31
1 :						1			:
29						I	Ī	Ī	42
30						Ī	Ī	Ī	Ī
max type	5	6	10	23	25	31	52	55	65

 \perp = No cycle found.

Counter-Examples

Mohar and Thomassen conjecture is false.

The Results

Number of

Type K_n	K_{15}	K_{16}	K_{19}	K_{27}	K_{28}	K_{31}	K_{39}	K_{40}	K_{43}
1	8	10	11	12	12	8	12	10	8
2	11	12	14	16	17	13	15	15	11
3	12	14	16	19	18	15	20	18	12
4	13	16	18	20		17	24	19	15
5	14	16		27	1	20	26	24	18
6		16		1	1	21	30	26	20
7			Τ.			23	32	28	21
8				1		24		30	23
9			1	1	1	28		33	24
10			Τ.			28		35	25
11						29		36	27
12								38	29
13						Τ.		40	30
14									31
:						1	\perp	⊥	:
29						1		1	42
30								1	
max type	5	6	10	23	25	31	52	55	65

 \perp = No cycle found.

Conjecture

For every $\alpha > 0$, there exists a triangulation with no splitting cycles of type larger than $\alpha \cdot \frac{g}{2}$.

Planar Case

Number of

Encoding Toroidal Triangulations

Properties of the planar case:

- 1/ We have a notion of 3-orientation for triangulations.
- 2/ Every 3-orientation admits a unique Schnyder wood coloration.
- 3/ Each color corresponds to a spanning tree and so there is no monochromatic cycle.
- 4/ The 3-orientations of a given triangulation have a structure of distributive lattice.
- 5/ The minimal element of the lattice has no clockwise oriented cycle.
- 6/ Triangulations are in bijection with a particular type of decorated embedded trees.

D Defens

Vincent DESPRE

Introduction

The Notion of Surface

Combinatorial Ma

Splittin Cycles

Cycles
The Prob

Experiment Approach

The Key P

The Resu

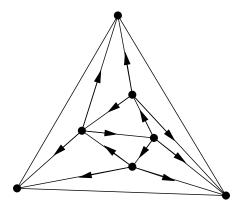
Toroidal
Triangulatio

Planar Case

Geometric Intersection Number of Curves

Conclusion

1/ We have a notion of 3-orientation for triangulations.



Kampen (1976)

Every planar triangulation admits a 3-orientation.

Defens

Vincent DESPRE

Introduction

Surface

Combinatorial M

Splittin

The Prof

Experiment

The Key

The Re

Encoding Toroidal

mangulati

Planar Case

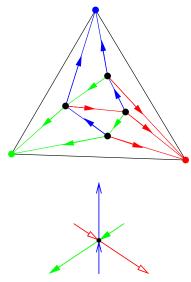
Geometric Intersection Number of Curves

The Problem

The Results

Conclusion

2/ Every 3-orientation admits a unique Schnyder wood coloration.



D Defens

Vincent DESPRE

Introduction

Surface

Combinatorial Ma

Splitting Cycles

The Problem Experimenta Approach

The Key F

Toroidal
Triangulation

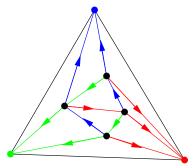
Planar Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion

2/ Every 3-orientation admits a unique Schnyder wood coloration.



de Fraisseix and Ossona de Mendez (2001)

Each 3-orientation of a plane simple triangulation admits a unique coloring (up to permutation of the colors) leading to a Schnyder wood.

Vincent DESPRE

Introduction

Surface

Combinatorial M

Splitting

Cycles

Experimen

Approach

THE NEY

The Result

Toroidal

Irlangulati

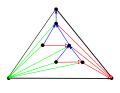
Planar Case

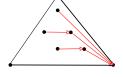
Intersection Number of

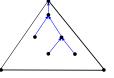
The Proble

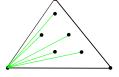
Conclusion

3/ Each color corresponds to a spanning tree and so there is no monochromatic cycle.









'nD Deter

Vincent DESPRE

Introduction

Surface

ombinatorial Ma

Splitting Cycles

The Probler Experiment

Approach

The Very Dr

The Bes

Encoding Toroidal

Triangulations Planar Case

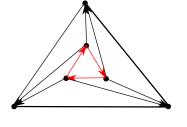
- - -

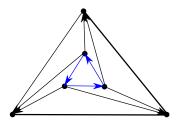
Intersection Number of Curves

The Proble

Conclusion

4/ The 3-orientations of a given triangulation have a structure of distributive lattice.





nD Defens

Vincent DESPRE

Introduction

Surface

Combinatorial Ma

Splittin Cycles

The Problem Experimenta Approach

The Key Poin

Encoding Toroidal

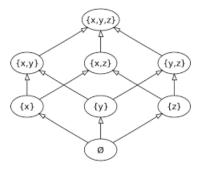
Planar Case

Geometric Intersection Number of

The Problem

Conclusion

4/ The 3-orientations of a given triangulation have a structure of distributive lattice.



Propp (1993), Ossona de Mendez (1994), Felsner (2004)

The set of the 3-orientations of a given triangulation has a structure of distributive lattice for the appropriate ordering.

Vincent DESPRE

Introduction

The Notion of Surface Topology Combinatorial Maps

Splitting Cycles

Experimental Approach The Key Poin

Triangulation

Planar Case Torus Case

Geometric Intersection Number of Curves

The Results

Conclusion

Properties of the planar case:

- 1/ We have a notion of 3-orientation for triangulations.
- 2/ Every 3-orientation admits a unique Schnyder wood coloration.
- 3/ Each color corresponds to a spanning tree and so there is no monochromatic cycle.
- 4/ The 3-orientations of a given triangulation have a structure of distributive lattice.
- 5/ The minimal element of the lattice has no clockwise oriented cycle.
- 6/ Triangulations are in bijection with a particular type of decorated embedded trees.

Vincent DESPRE

Introduction

Surface

Combinatorial Ma

Splitting Cycles

The Proble

Approach

The Key F

The Res

Toroidal
Triangulatio

Planar Case

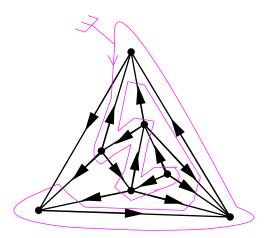
Planar Case

Geometric Intersection Number of Curves

The Proble

Conclusion

6/ Triangulations are in bijection with a particular type of decorated embedded trees (Poulalhon and Schaeffer, 2006).



Vincent DESPRE

Introduction

Surface

Combinatorial Ma

Splitting

The Problem

Approach

The Key Po

The Resu

Toroidal Triangulatio

Planar Casa

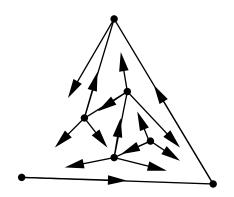
Planar Case

Geometric Intersection Number of Curves

The Problem The Results

Conclusion

6/ Triangulations are in bijection with a particular type of decorated embedded trees (**Poulalhon and Schaeffer**, **2006**).



Vincent DESPRE

Introduction

Surface

Combinatorial Ma

Splitting Cycles

The Proble

Approach

The Resi

Encoding Toroidal

Triangulation

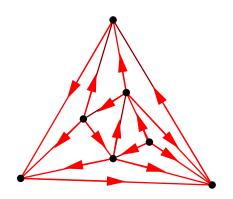
Planar Case

Intersection Number of Curves

The Result

Conclusion

6/ Triangulations are in bijection with a particular type of decorated embedded trees (**Poulalhon and Schaeffer**, **2006**).



Vincent DESPRE

Introduction

Surface
Topology

Splitting

Experimenta Approach The Key Poir

Encoding Toroidal Triangulation

Iriangulation
Planar Case

Torus Case

Geometric Intersection Number of Curves The Problem

Conclusion

Properties of the torus case:

- 1/ We have a notion of 3-orientation for triangulations.
- 2/ Every 3-orientation admits a unique Schnyder wood coloration.
- 3/ Each color corresponds to a spanning tree and so There is no monochromatic **contractible** cycle.
- 4/ The 3-orientations of a given triangulation have a structure of distributive lattices.
- 5/ The minimal element of each lattice has no clockwise oriented contractible cycle.
- 6/ Triangulations are in bijection with a particular type of decorated **unicellular toroidal maps**.

Introduction

Surface

Combinatorial Ma

Splitting

Cycles
The Prob

Approach

The Key Po

The Result

Encoding Toroidal Triangulation

Planar Case

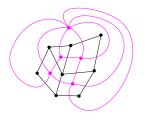
Torus Case

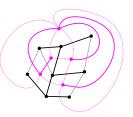
Geometric Intersection Number of Curves

The Problem

Conclusion

6/ Triangulations are in bijection with a particular type of decorated **unicellular toroidal maps**.





Tree-cotree Decomposition: (T, C, X). T has n-1 edges, C has f-1 edges and X the remaining. $\chi = n - (n-1+f-1+x) + f \Leftrightarrow x = 2 - \chi = 2q$

Vincent DESPRE

Introduction

Surface

Topology

Splitting

The Problem Experimenta

Approach

The Resul

The Resu

Toroidal Triangulations

Planar Casa

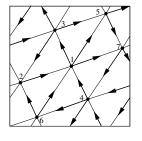
Torus Case

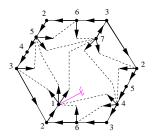
Geometric Intersection Number of Curves

The Probler

Conclusion

6/ Triangulations are in bijection with a particular type of decorated **unicellular toroidal maps**.





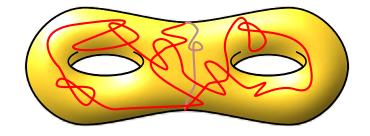
Cycles

Triangulations

Torus Case

Number of Curves

The Problem



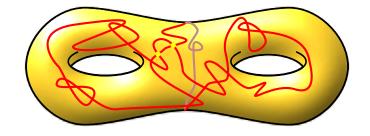
Cycles

Triangulations

Torus Case

Number of Curves

The Problem



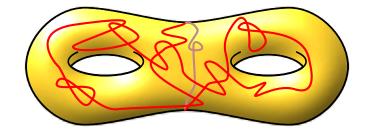
Cycles

Triangulations

Torus Case

Number of Curves

The Problem



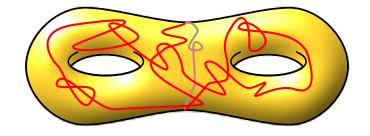
Cycles

Triangulations

Torus Case

Number of Curves

The Problem



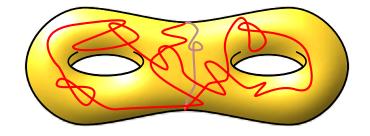
Cycles

Triangulations

Torus Case

Number of

Curves The Problem



hD Defens

Vincent DESPRE

Introduction

The Notion of

Combinatorial M

Splittin Cycles

Cycles

Experiment

Approach

The Re

Encoding

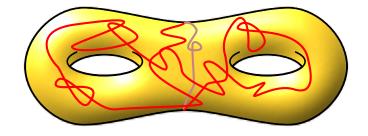
Toroidal Triangulations

Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem

Conclusion



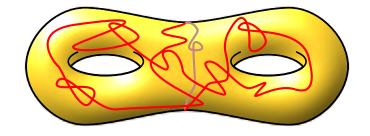
Cycles

Triangulations

Torus Case

Number of

Curves The Problem



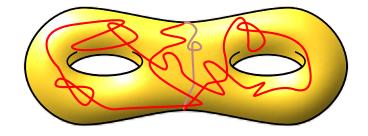
Cycles

Triangulations

Torus Case

Number of Curves

The Problem



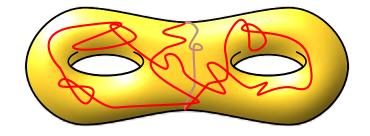
Cycles

Triangulations

Torus Case

Number of Curves

The Problem



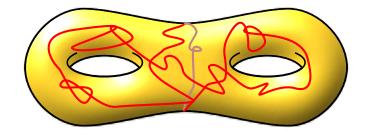
Cycles

Triangulations

Torus Case

Number of Curves

The Problem

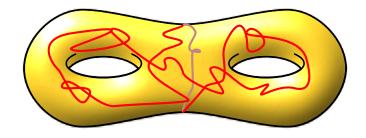


Cycles

Triangulations

Torus Case

Number of Curves The Problem



hD Defens

Vincent DESPRE

Introduction

The Notion of

Combinatorial M

Splittin Cycles

Cycles

Experiment

Approach

The Res

Encoding

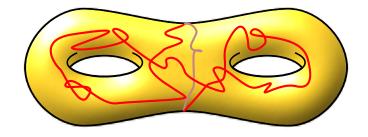
Toroidal Triangulations

Planar Case Torus Case

Geometric Intersection Number of Curves

The Problem

Conclusion



hD Defens

Vincent DESPRE

Introduction

The Notion of

Combinatorial Ma

Splittin Cycles

Cycles

Experiment

Approach

The Res

Encoding Toroidal

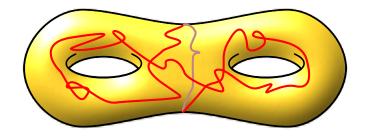
Triangulations

Planar Case Torus Case

Intersection
Number of
Curves

The Problem

Conclusion



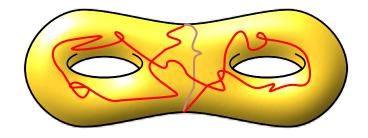
Cycles

Triangulations

Torus Case

Number of Curves

The Problem



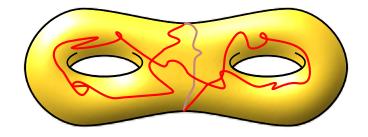
Cycles

Triangulations

Torus Case

Number of Curves

The Problem



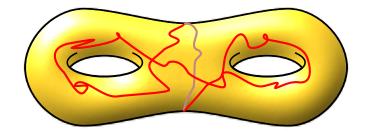
Cycles

Triangulations

Torus Case

Number of Curves

The Problem



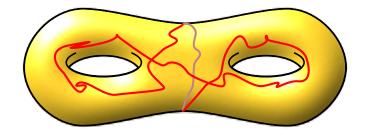
Cycles

Triangulations

Torus Case

Number of Curves

The Problem



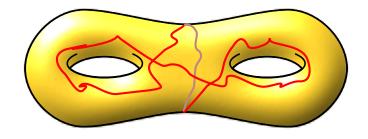
Cycles

Triangulations

Torus Case

Number of Curves

The Problem



Cycles

Triangulations

Torus Case

Number of Curves

The Problem



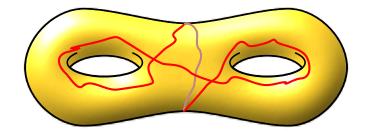
Cycles

Triangulations

Torus Case

Number of Curves

The Problem



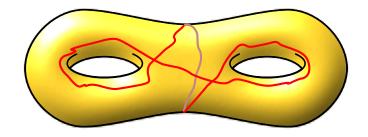
Cycles

Triangulations

Torus Case

Number of Curves

The Problem



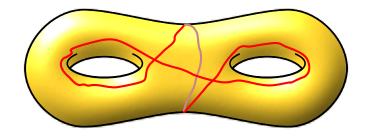
Cycles

Triangulations

Torus Case

Number of Curves

The Problem



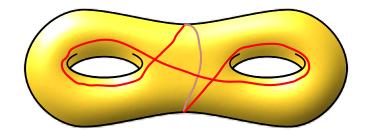
Cycles

Triangulations

Torus Case

Number of Curves

The Problem



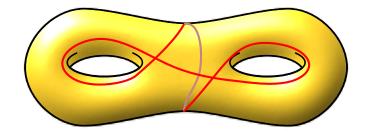
Cycles

Triangulations

Torus Case

Number of Curves

The Problem



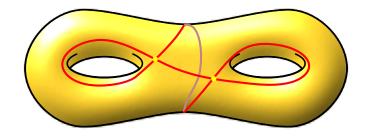
Cycles

Triangulations

Torus Case

Number of Curves

The Problem



hD Detei

Vincent DESPRE

Introduction

Surface

Combinatorial Ma

Splittin Cycles

Experimenta Approach

The Resul

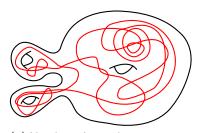
Toroidal
Triangulation

Planar Case
Torus Case

Intersectio
Number of
Curves
The Problem

The Problem
The Results

Conclusion



(g) Number of crossings: too many!

(h) Number of crossings:1 → optimal

Three problems:

- → Deciding if a curve can be made simple by homotopy.
- Finding the minimum possible number of self-intersections.
- → Finding a corresponding minimal representative.

PhD Defer

Vincent DESPRE

Introduction

Surface

Combinatorial Ma

Splitting Cycles

Experimen Approach

The Key Po

- ..

Toroidal Triangulatio

Planar Case
Torus Case

Intersectio Number of Curves

The Results

Conclusion

Boundaries Simple Number Representative $O((g\ell)^2)$ $O((g\ell)^2)$ $O((g\ell)^4)$ b > 0BS (1984) CL (1987) A (2015) b = 0L (1987) L (1987) dGS (1997) $O(\ell^5)$ $O(\ell^5)$ GKZ (2005) GKZ (2005) Any $O(\ell \cdot \log^2(\ell))$

BS: Birman and Series, An algorithm for simple curves on surfaces.

CL: Cohen and Lustig, Paths of geodesics and geometric intersection numbers: I.

L: Lustig, Paths of geodesics and geometric intersection numbers: II.

A: Arettines, A combinatorial algorithm for visualizing representatives with minimal self-intersection.

dGS: de Graaf and Schrijver, Making curves minimally crossing by Reidemeister moves.

GKZ: Gonçalves, Kudryavtseva and Zieschang, An algorithm for minimal number of (self-)intersection points of curves on surfaces.

'hD Deter

Vincent DESPRE

The Notion of Surface Topology

Splitting Cycles

The Problem
Experimenta
Approach
The Key Poir
The Results

Toroidal Triangulation

Torus Case Geometric

Intersection
Number of
Curves
The Problem

Conclusion

Publications:

- 1/ Some Triangulated Surfaces without Balanced Splitting: Published in *Graphs and Combinatorics*.
- 2/ Encoding Toroidal Triangulations: Accepted in *Discrete*& Computationnal Geometry.
- 3/ Computing the Geometric Intersection Number of Curves: Will be submitted to the next SoCG.

Work in progress:

- 1/ Looking for a proof that does not require a computer.
- 2/ There are a lot of implications for the bijection in the plane. Is it possible to generalized them.
- 3/ It remains to look at the construction of a minimal representative for a couple of curves.

PhD Defer

Vincent DESPRE

Introduction

Surface

Combinatorial Ma

Splittin Cycles

The Problem Experiment

Approach

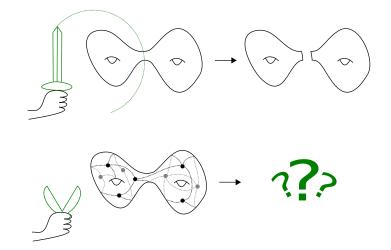
The Resi

Encoding
Toroidal
Triangulation

Planar Case
Torus Case

Geometric Intersection Number of Curves The Problem

Conclusion



Conjecture

Deciding if there is a simple closed walk in a given homotopy class is NP-complete and FPT parametrized by the genus of the surface.

Do you have questions?