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Abstract

In this thesis, we focus on the topological properties of surfaces, i.e. those that
are preserved by continuous deformations. Intuitively, it can be understood as the
properties that describe the general shape of surfaces. We describe surfaces as com-
binatorial maps. They have the double advantage of being well defined mathematical
objects and of being straightforwardly transformed into data-structures.

We study three distinct problems. Firstly, we give algorithms to compute geomet-
ric intersection numbers of curves on surfaces. We obtain a quadratic algorithm to
compute the minimal number of self-intersections in a homotopy class, a quartic one
to construct a minimal representative and a quasi-linear one to decide if a homotopy
class contains a simple curve. Secondly, we give counter-examples to a conjecture
of Mohar and Thomassen about the existence of splitting cycles in triangulations.
Finally, we use the recent work of Gonçalves and Lévèque about toroidal Schnyder
woods to describe a bijection between toroidal triangulations and toroidal unicellular
maps analogous to the well known bijection of Poulalhon and Schaeffer for planar
triangulations.

Many different points of view are involved in this thesis. We thus propose a large
preliminary chapter where we provide connections between the different viewpoints.
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Résumé

Dans cette thèse, nous nous intéressons aux propriétés topologiques des surfaces,
i.e. celles qui sont préservées par des déformations continues. Intuitivement, ces
propriétés peuvent être imaginées comme étant celles qui décrivent la forme générale
des surfaces. Nous utilisons des cartes combinatoires pour décrire les surfaces. Elles
ont le double avantage d’être des objets mathématiques naturels et de pouvoir être
transformées en structure de données.

Nous étudions trois problèmes différents. Premièrement, nous donnons des algo-
rithmes de calcul du nombre géométrique d’intersection de courbes dessinées sur des
surfaces. Nous avons obtenu: un algorithme quadratique de calcul du nombre mini-
mal d’auto-intersections dans une classe d’homotopie, un algorithme quartique pour
construire un représentant minimal et un algorithme quasi-linéaire pour déterminer
si une classe d’homotopie contient bien une courbe simple. Nous donnons ensuite
des contre-exemples à la conjecture de Mohar et Thomassen traitant de l’existence
de cycles de partage dans les triangulations. Finalement, nous utilisons les travaux
récents de Lévèque et Gonçalves à propos des bois toriques de Schnyder pour con-
struire une bijection entre les triangulations du tore et certaines cartes unicellulaires
analogues à la célèbre bijection de Poulalhon et Schaeffer pour les triangulations
planaires.

Plusieurs points de vue sont utilisés au cours de cette thèse. Nous proposons
donc un important chapitre préliminaire où nous insistons sur les connections entre
ces différents points de vue.
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Introduction en Français

0.1 Sujet

La topologie est l’étude des propriétés des formes qui sont préservées par des déformations
continues. Il n’y a pas de notion de longueur, d’aire ou de courbure qui appartiennent
au domaine de la géométrie. Les propriétés géométriques sont préservées uniquement
par des transformations rigides telles que les rotations ou les translations. Ainsi, dans
un sens, la topologie manipule uniquement les propriétés les plus robustes. On at-
tribue généralement les premiers travaux de nature topologique à Euler (1707-1783)
qui a découvert la célèbre formule qui porte depuis son nom: V −E +F = 2. Ici V ,
E et F sont respectivement le nombre de sommets, d’arêtes et de faces d’un polyèdre
donné. On peut se familiariser avec cette formule en vérifiant sa véracité dans le cas
des solides platoniciens de la figure 1. Le fait que cette formule ne s’applique pas
seulement aux polyèdres convexes mais à n’importe quelle subdivision de la sphère
ne sera compris que bien plus tard quand la topologie sera devenue une discipline en
tant que telle.

Figure 1: Les 5 polyhèdres platoniques: le tétrahèdre, le cube, l’octahèdre, le
dodécahèdre et l’icosahèdre. http://whistleralley.com/polyhedra/platonic.htm

Il est possible de définir une notion de dimension qui caractérise la topologie d’un
espace. Typiquement, un polyèdre a une dimension 3 tandis que son enveloppe a
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une dimension égale à 2. Les espaces topologiques de dimension 2 correspondent à la
notion intuitive de surface. Dans cette thèse, nous cherchons à développer des outils
très généraux pour l’analyse des propriétés topologiques des surfaces. Pour illustrer la
différence de points de vue entre le topologue et le géomètre dans le cas des surfaces,
considérons la figure 2. Le topologue voit deux objets identiques qu’il appelle sphères
car ces deux surfaces peuvent être déformées continûment en sphères. Au contraire
un spécialiste de géométrie voit deux formes différentes. Évidemment, en ajoutant
plus de structures, on devient capable de caractériser les formes plus précisément.
Par exemple, un être humain ne verra pas seulement deux formes différentes mais
un lapin et un dauphin, ajoutant une notion de sémantique. Clairement, la tâche de
classification devient de plus en plus ardue quand on ajoute de la structure. Il est
donc avisé de pratiquer une classification progressive en commençant par considérer
les aspects purement topologiques puis la géométrie et enfin la sémantique. En
pratique, la topologie apparâıt comme la première étape dans de nombreux processus
de classification.

Figure 2: Deux sphères.

Plusieurs communautés s’intéressent aux problèmes topologiques sur les surfaces
et les considèrent avec des points de vue différents. En topologie générale, on définit
une surface comme une 2-variété. L’idée est de prendre le plan comme modèle de
surface et ensuite de définir une surface comme un espace topologique qui ressemble
localement au modèle en chacun de ses points. Ce point de vue prend sa source
dans le célèbre Habilitationsvortrag de Riemann (1854). En parallèle une approche
combinatoire s’est développée qui considère les espaces obtenus par assemblages de
pièces élémentaires, généralement des simplexes (les points, les arêtes et les triangles
dans le cas des surfaces). Le modèle des cartes combinatoires décrites à l’aide de
systèmes de rotation est issu de ce type de construction. On les voit apparâıtre dans
les travaux de Heffter (1891) puis dans les travaux d’Edmonds (1960). Elles sont
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devenues populaires grâce, entre autres, à Youngs (1968) et Tutte (1973). Un point
de vue intermédiaire a été adopté par les théoriciens des graphes. Ils visualisent les
graphes comme des objets de dimension 1 qui peuvent être dessinés sur des surfaces.
Cette idée a amené naturellement la notion de plongement cellulaire de graphes.
Cette approche a été popularisée par Robertson et Seymour dans leur célèbre preuve
du théorème des mineurs des graphes (1983-2004).

Ces différents points de vue sont illustrés par la figure 3. (a) montre la représentation
classique d’un tore comme une forme plongée dans l’espace. (b) définit aussi un tore
en identifiant les côtés opposés d’un carré (Cette représentation est préférée par la
suite car elle permet d’avoir une meilleure vue d’ensemble). (c) représente un tore
obtenu en assemblant des triangles, ce genre de cartes combinatoires est classique et
est appelé triangulations. Finalement (d) montre un graphe à trois sommets, plongé
sur un tore. Il est naturel de vouloir dessiner un graphe sur une surface et cela permet
de formuler facilement de nombreux problèmes de théorie des graphes. Le contrepar-
tie de cette dernière approche est la grande liberté qu’elle laisse aux courbes qui
représentent les arêtes du graphe, les rendant potentiellement très complexes. Dans
cette thèse, les cartes combinatoires seront systématiquement utilisées pour décrire
les algorithmes et leurs preuves mais tous les points de vue seront utilisés dans le
but d’obtenir la formulation la plus naturelle possible de chaque problème abordé.

Figure 3: Des tores vu par différentes communautés.

Nous avons parlé des différences entre topologie et géométrie. Cependant, la
géométrie peut parfois servir d’outil pour résoudre des problèmes purement topologiques.
En effet, quand on s’intéresse à un problème topologique, il peut être utile d’ajouter
une géométrie particulière à la surface considérée. Dans la mesure où la topologie
est indépendante de la géométrie choisie, il est possible de définir n’importe quelle
notion de distance ou d’angle qui a du sens vis-à-vis du problème étudié. Par exem-
ple, considérons le problème suivant: ”Une courbe donnée peut-elle être continûment
déformée en une courbe simple (i.e. une courbe sans auto-intersection)?”. Imagi-
nons qu’on puisse trouver une géométrie particulière pour laquelle le processus de
raccourcissement de courbe donnera toujours une courbe simple, s’il en existe une.
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On pourrait alors trouver la solution à notre problème en étudiant ce qui est connu
à propos des raccourcissements de courbes. Je voudrais insister sur le fait qu’il est
difficile de construire la bonne géométrie à associer à la surface sous-jacente. Ef-
fectivement, si toutes les différentes surfaces topologiques peuvent être facilement
obtenues comme objets discrets, ce n’est pas le cas pour toutes les géométries (par
exemple, les métriques Riemanniennes sont problématiques).

0.2 Problèmes étudiés

Dans cette thèse nous nous intéressons à trois problèmes de natures assez différentes.
Le premier propose des algorithmes pour un problème de topologie très classique. Ici,
la difficulté est de proposer une discrétisation qui permette d’avoir accès aux résultats
connus dans le cas continu. Ensuite, nous regardons en détail une conjecture à propos
de la structure des cartes combinatoires. Finalement, la dernière étude concerne
l’énumération des cartes combinatoires vérifiant certaines propriétés. Regardons ces
trois problèmes plus en détail.

0.2.1 Nombre géométrique d’intersection de courbes

Nous souhaitons obtenir un algorithme qui prend en entrée une surface Σ et une
courbe C sur Σ. La sortie recherchée est le nombre minimal d’auto-intersection
qu’on peut obtenir pour C en l’autorisant à être continûment déformé. Regardons
l’exemple de la figure 4. La partie gauche montre une entrée possible. C est dans
une configuration assez complexe qui peut être très largement simplifiée comme le
montre la partie droite de la figure. Dans ce cas la sortie devrait être 1.

Figure 4: La même courbe (à déformation continue près) dans deux configurations.
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Plusieurs variantes peuvent être imaginées. La sortie peut ne pas se contenter
d’être le nombre de croisements minimum mais ajouter une configuration de C
réalisant ce minimum. De façon assez surprenante, ce problème se révèle être sig-
nificativement plus compliqué. Une autre variante est de juste vérifier si C peut
être déformée en une courbe simple. Cela peut être intéressant car les techniques
de chirurgie de surfaces (type copier-coller) sont souvent utilisées en topologie pour
prouver des théorèmes. Pour pouvoir couper correctement une surface selon une
courbe, il est nécessaire que celle-ci soit simple. Ce dernier problème apparâıt dans
les travaux de Poincaré. Finalement, les mêmes questions peuvent être posées pour
les intersections de systèmes de courbes au lieu des auto-intersections d’une seule
courbe.

Ces problèmes sont des problèmes naturels de topologie générale, ils ont donc
été très étudiés depuis l’époque de Poincaré jusqu’à aujourd’hui. Plusieurs solutions
intéressantes ont été proposées et certaines sont de nature algorithmique. D’autres
idées viennent de la théorie des nœuds. Un nœud est un cercle plongé dans R3. La
façon la plus simple de visualiser un nœud est de le projeter sur un plan et de con-
sidérer le diagramme obtenu (la figure 5 en donne des exemples). Ces diagrammes
sont des courbes dessinées dans le plan avec une notion supplémentaire de dessus et
dessous aux auto-intersections. La question la plus naturelle à propos d’un nœud est
de savoir s’il est dénoué. L’une des approches classiques est d’appliquer une série de
transformations particulières appelées mouvements de Redemeister dans le but de
dénouer le diagramme. Un résultat très connu prouve que ces mouvements sont suff-
isants pour dénouer n’importe quel nœud qui peut l’être. Plus récemment, la nature
polynomial [Lackenby, 2013] du nombre de mouvements nécessaires a été prouvée.
Cette approche peut être utilisée pour résoudre notre problème en autorisant plus de
mouvements puisque nous n’avons pas à respecter des notions de dessus et dessous.

Nous avons construit nos algorithmes en associant toutes ces idées dans un cadre
discret. Nous avons obtenu des algorithmes simples dont les caractéristiques sont
décrites dans les théorèmes 3.1.1, 3.1.2 et 3.1.3. La discrétisation du problème est la
clé de nos résultats. Les détails sont décrits dans le chapitre correspondant mais on
peut faire ici quelques remarques intéressantes. Nous avons utilisé des cartes combi-
natoires particulières appelées systèmes de quads qui ont des propriétés géométriques
très utiles. Ils fournissent un compromis intéressant entre efficacité et précision (il est
difficile d’obtenir des propriétés géométriques proches de la géométrie hyperboliques).
Les systèmes de quads et leur géométrie sont décrits en détail dans les préliminaires.
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Figure 5: Classification des petits nœuds. Wikipedia

0.2.2 Cycle de partage

Le paramètre principal pour définir une surface topologique est son genre. Il corre-
spond au nombre de poignées de la surface dans le cas orientable et le nombre de
copies disjointes de plans projectifs troués dans le cas non-orientable. Nous nous con-
centrons sur le cas des surfaces orientables. Les courbes simples des surfaces ont elles
deux caractéristiques importantes. Le première est la contractibilité. Une courbe est
dite contractile si et seulement si elle peut être déformée continûment en un point. La
seconde caractéristique est le caractère séparant. Une courbe simple est séparative
si et seulement si son complément est déconnecté. Toutes les courbes simples con-
tractiles sont séparatives. Les courbes contractile peuvent être caractérisées par le
fait qu’elle séparent la surface en deux parties dont l’une est un disque. Cependant,
les courbes non-contractile peuvent être séparatives ou non. Un cycle de partage
est une courbe simple séparative et non-contractile. Une telle courbe sépare la sur-
face en partie de genre au moins 1. Le genre est additif donc la somme des genres
des deux parties séparées par un cycle de partage est égale au genre de la surface
de départ. Ainsi seules les surfaces de genre au moins 2 peuvent avoir un cycle de
partage. Dans le monde continu, toutes les surfaces de genre au moins 2 admettent
un cycle de partage (voir figure 6).
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Figure 6: Un cycle de partage dans un cadre continu.

L’intérêt de trouver des cycles de partage est, entre autres, de pouvoir les utiliser
pour découper la surface en plusieurs morceaux. Ce genre de découpes peut être
utilisé pour faire des preuves par récurrence ou pour construire des algorithmes de
type diviser pour régner. Il est donc naturel de rechercher des cycles simples. Une
surface topologique a une infinité de cycles de partage. Effectivement, à partir d’un
cycle comme celui de la figure 6 on peut obtenir d’autres cycles en appliquant les
automorphismes de la surface. Dans le monde du discret, être un cycle simple est
un propriété beaucoup plus difficile à obtenir. On veut obtenir des cycles qui sont
des marches fermées simples dans le graphe sous-jacent. Il apparâıt que certaines
cartes combinatoires n’admettent pas de cycle de partage. En plus, il est difficile de
savoir si une carte donnée à un cycle de partage car le problème est connu pour être
NP-complet pour des cartes quelconques [Chambers et al., 2006].

Figure 7: Un cycle de partage dans un cadre discret.

Il a été conjecturé par Barnette dans les années 80 que toutes les triangulations
simples (telles que le graphe sous-jacent, qui n’ont pas d’arêtes boucles ni d’arêtes
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multiples) doivent avoir un cycle de partage. Par la suite, Mohar et Thomassen
ont ajouté que ces cartes devaient avoir des cycles de partage permettant de réaliser
toutes les répartitions de genre possible. Cela nous a amené à introduire la notion
de type d’un cycle de partage qui correspond au genre des deux parties obtenues
en découpant la surface selon le cycle. Un cycle de partage est ainsi dit équilibré
quand son type est équilibré. Nous avons trouvé des contre-exemples à cette dernière
conjecture en utilisant des plongements de graphes complets. Par exemple, nous
avons trouvé des plongements du graphe complet à 19 sommets sur la surface de
genre 20, qui n’ont pas de cycle de partage équilibré (de type (10,10)).

0.2.3 Triangulations du tore

Considérer que les surfaces sont des cartes combinatoires, soulève immédiatement
des questions. Par exemple, étant donnée une surface Σ et un nombre n, combien
de cartes à n sommets sont homéomorphes à Σ? À quel point peuvent-elles être
différentes? Nous nous intéressons ici à un type particulier de cartes, les triangula-
tions. Pour les compter plus facilement, on considère en général des cartes enracinées.
Une racine est une arête orientée ou alternativement un angle fait face. Un auto-
morphisme de carte enracinée préserve la racine. La plupart des cartes enracinées
n’ont aucun automorphisme [Richmond and Wormald, 1995] non trivial ce qui les
rend plus pratique à compter.

De nombreux travaux existent avec de nombreux différents types de cartes, en
particulier dans le cas planaire. Par exemple, le nombre de triangulations enracinées
de la sphère avec n + 2 sommets est égal à 2(4n−3)!

n!(3n−1)!
et ce résultat est connu depuis

1962 [Tutte, 1962]. Il est assez rare d’obtenir une formule aussi simple. Le nombre
de cartes à n sommets d’un type donné est plus souvent obtenu par une formule
de récurrence sur n. On remarquera que ces formules sont généralement énoncées à
l’aide de séries formelles.

L’histoire de l’énumération commence avec l’énumération d’ensembles faciles à
compter de façon directe, comme typiquement l’ensemble des arbres enracinés. En-
suite pour compter un certain type d’objets, la première idée est d’établir une bi-
jection entre ces objets et un ensemble bien connu. Pour ce qui nous concerne,
considérons le cas des triangulations planaires enracinées. Elles sont en bijection
avec un sous-ensemble des arbres enracinés. On ne donnera pas les détails de cette
construction ici mais une illustration est donnée en figure 8. Cette bijection permet
de compter le nombre de triangulations mais a de nombreuses autres conséquences.
Celle qui est le plus en rapport avec le contenu global de cette thèse est la possi-
bilité d’obtenir un tirage au sort uniforme des triangulations planaires enracinées à
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n sommets en temps linéaire par rapport à n.

Figure 8: Une bijection pour les triangulations planaires enracinées.

Le problème qui nous intéresse dans cette thèse est la généralisation de cette
bijection au cas des triangulations du tore. Premièrement, remarquons que les tri-
angulations du tore ne peuvent pas naturellement être en bijection avec des arbres
puisque ceux ci ne peuvent pas être plongés cellulairement sur une autre surface que
le plan ou la sphère. La bonne généralisation des arbres en genre supérieur nécessite
l’utilisation de cartes unicellulaires qui sont des cartes à une seule face. La bijection
qu’on recherche doit être explicite et facilement calculable pour être intéressante.
Dans le cas planaire, la construction de la bijection est connectée à la notion de bois
de Schnyder. Un bois de Schnyder associé à une triangulation planaire permet une
orientation ainsi qu’une coloration des arêtes du graphe sous-jacent (voir figure 9).
Dans ce cas, les orientations et les couleurs sont très faciles à construire puisque
que chaque couleur prend la forme d’un arbre couvrant orienté. Nous avons réussi à
obtenir une généralisation satisfaisante pour le cas du tore.
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Figure 9: La règle local et un exemple de triangulation.
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0.3 Organization

Dans le chapitre suivant nommé Préliminaires nous donnons toutes les définitions
nécessaires aux études de nos trois problèmes. Comme nous l’avons dit au début de
cette introduction, trois différents points de vue sont utilisés au cours de cette thèse.
Nous décrivons en détail chacune de ces constructions ainsi que les connections qui
les relient. Dans la mesure où nous souhaitons être lisible par des gens de chacune des
communautés correspondantes, nous commençons par des rappels avant de rentrer
dans les détails.

Ensuite nous développons les solutions que nous proposons pour les trois problèmes
énoncés dans les chapitres 3, 4 et 5. Trois articles ont été rédigés qui correspondent
à ces trois problèmes, deux d’entre eux sont en cours de relecture et celui sur le
cycle de partage a été accepté dans la revue Graphs and Combinatorics. Chacune
de ces parties a un contenu similaire à la version arXiv de l’article correspondant
mais avec une formulation harmonisée et des remarques additionnelles. L’ordre dans
lequel les chapitres sont présentés a été choisi en fonction des remarques suivantes.
Premièrement, nous traitons le problème d’intersection géométrique de courbes car
c’est un problème naturel et qu’il permet de se familiariser avec les détails de la
traduction du continu au discret. Ensuite le problème du cycle de partage montre
que les constructions discrètes peuvent aussi avoir des propriétés qui ne peuvent pas
être facilement déduites du cas continu. En particulier, la définition de courbe simple
est très différente dans ces deux premiers chapitres. Dans le chapitre 3 on donne un
algorithme quasi-linéaire et donc très efficace pour tester la simplicité d’une classe
d’homotopie alors que trouver un cycle simple de partage est difficile et nécessite
d’utiliser des heuristiques pour être en pratique calculable. Dans cette seconde par-
tie, nous nous sommes intéressés à la possibilité de tester notre conjecture sur des
triangulations aléatoires. Le dernier chapitre nous rapproche de cette possibilité
pour le tore et peut-être dans un avenir proche seront nous capables, en poursuivant
cette étude, d’obtenir le tirage aléatoire uniforme pour les triangulations en genre
quelconque.



Chapter 1

Introduction

1.1 Subject

Topology is the study of properties of shapes that are preserved by continuous
deformations. There is no notion of length, area or curvature which belong to the
world of geometry. Geometric properties are only preserved by rigid transformations
such as rotations and translations. In some sense topology is thus concerned with
more robust properties. We usually trace topology back to Euler (1707-1783) who
discovered the famous formula, now bearing his name: V-E+F=2. Here V, E and
F are respectively the number of vertices, edges and faces of a given polyhedron.
This can be easily check on the platonic solids as illustrated in Figure 10. That this
formula not only applies to convex polyhedron but to any subdivision of the sphere
will be noticed much later when topology will become a discipline in its own.

Figure 10: The five platonic polyhedra: tetrahedron, cube, octahedron, dodecahe-
dron and icosahedron. http://whistleralley.com/polyhedra/platonic.htm

It is possible to define a notion of dimension that characterizes the topology of
a space. Typically a polyhedron has dimension 3 while its envelop has dimension 2.

19
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Dimension 2 topological spaces capture the intuitive notion of surface. In this thesis,
we aim at designing very general tools for the analysis of topological properties of
surfaces. Again, to illustrate the difference of point of views between a topologist
and a geometer, let us consider figure 11. A topologist sees two identical objects
that he calls spheres because the two surfaces can be deformed continuously to a
sphere. On the contrary a specialist of geometry would see two distinct shapes.
Obviously, adding more structures allows you to distinguish shapes in a finer way.
For instance, a human being will not only see distinct shapes but will see a rabbit
and a dolphin thus adding some semantic. Clearly the task of classification becomes
more complex as more structure is involved. It is thus a good idea to apply a
progressive classification, first considering purely topological aspects, then refining
with geometric considerations and finally semantic discriminators. In fact topology
often appears as the first step in a classification process.

Figure 11: Two spheres.

Several communities are dealing with topological properties of surfaces with their
own point of view. The classical topologist defines a surface as a 2-dimensional
manifold. The idea is to consider the plane as the general model for a two dimensional
object and then call surface any topological space that locally looks like that model.
This point of view takes its source in the famous Habilitationsvortrag by Riemann
(1854). In parallel to this approach a combinatorial viewpoint was developed. Here
spaces are considered as assemblies of elementary pieces, usually simplexes (points,
edges and triangles as far as surfaces are concerned). The model of combinatorial
maps described by rotation schemes belongs to this trend. It first appeared in the
work of Heffter (1891) and Edmonds (1960) and was further developed by people
like Youngs (1968) and Tutte (1973). An intermediate viewpoint was adopted by
many graph theorists. They envision a graph as a 1-dimensional structure that can
be drawn on a topological surface. This naturally leads to the notion of cellular
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embeddings of graphs. It was popularized by Robertson and Seymour in their proof
of the graph minor theorem (1983-2004).

We illustrate those different points of view in figure 12. First (a) shows the
classical representation of a torus as a shape embedded in R3. (b) also defines a
torus by identifying the opposite sides of a square. This representation is used for
the next cases because it allows to have a good view on the whole torus (nothing is
hidden behind). (c) corresponds to a torus constructed from an assembly of triangles.
Those kind of combinatorial maps are classical objects called triangulations. Finally
(d) shows a graph on 3 vertices embedded on the torus. It is natural to try to draw a
graph on a surface and it allows very natural description of problems in graph theory.
The counterpart of that last representation is that it leaves a lot of freedom for the
curves corresponding to edges, making them potentially very complicated. In this
thesis, combinatorial maps will be used for the description of algorithms and their
proofs but all the points of view will be used in order to try to give the most natural
description possible of each problem considered.

Figure 12: Three tori seen by three different communities.

We already discussed the difference between geometry and topology. However, it
can be interesting to consider geometry even for purely topological questions. Indeed
when looking at a topological problem it can be useful to add a specific geometry to
the underlying surface. Since topological problems are independent of the geometry,
it is possible to define any notion of distance or angle that makes sense with respect
to the considered problem. For instance, let us look at a problem defined as ”Can
a given curve be deformed continuously to a simple curve (i.e. a curve without
crossings)?”. Imagine that we can find a geometry for which tightening a curve
with respect to that geometry will always outputs a simple curve if it exists. By
looking what is known about those tightened curves we can finally find the answer
to the initial topological question. I want to emphasise that the difficulty here is
to construct the interesting geometry from the initial surface. Indeed all topological
surfaces can be obtained as discrete constructions but it is not the case for all possible
geometries (consider for instance Riemannian metrics).
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1.2 Studied Problems

In this thesis we study three particular problems. They have quite different flavors.
The first one takes a classical problem of general topology and develops algorithms
to deal with it. One difficulty is to correctly translate the continuous problem into
an appropriate discrete setting. Then, we look in details at a conjecture about the
structure of combinatorial maps. Combinatorial maps are of intrinsic interest as
mathematical objects. In addition, it provides a very good data-structure to store
a surface in a compact way. Thus, we will use them for all our algorithms. Finally
the last study is about the enumeration of combinatorial maps with a fixed property.
Let us look the corresponding problems in more details.

1.2.1 Geometric Intersection Number of Curves

We are looking for an algorithm that takes as input a surface Σ and a curve C on
Σ. We want to output the minimal number of self-intersections of C by allowing it
to be continuously deformed. Let us look at figure 13 for an example. The left part
shows a possible entry. C has a quite complicated arrangement that can be strongly
simplified as shown in the second part of the figure. In that case the output should
be 1.

Figure 13: The same curve (up to continuous deformations) on a surface.

Many variants can be imagined. The output can be not only the number of
intersections but also a configuration of C realizing the minimum. Last problem quite
surprisingly appears to be significantly more expensive with our current algorithms.
Another variant is to just ask if C can be deformed to a simple curve (i.e. without
self-crossings). This can be interesting since surgery of surfaces by cut and paste
operators are often used as an efficient tool for proving properties of topological
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surfaces. In order to cut a surface properly we often use a simple curve to cut along
it. This last problem first appeared in Poincaré’s work. Finally, the same things can
be asked for a system of curves instead of just one curve by considering crossings of
curves instead of self-intersections.

Those problems are natural problems of general topology. They have thus been
well studied. First the question has been looked in details starting from Poincaré up
to now. A lot of interesting solutions are proposed and some of them are algorithmic.
Other ideas come from knot theory. A knot is a circle embedded on R3. The easiest
way to represent a knot is to project it on a plane and look at the obtained diagram
(see figure 14 for examples). It corresponds to curves drawn in the plane with
an added notion of top and bottom for the self-crossings of the curve. The most
natural question about a knot is if it is unknoted. A classical approach is to perform
particular transformations on the diagram called Redemeister moves in order to
untie the diagram. A very well known result states that those particular moves are
sufficient to untie any knot that can be and recently the number of moves necessary
to unknot a knot as been shown to be polynomial [Lackenby, 2013]. This approach
can be used to solve our problem by allowing more Redemeister-like moves since we
do not have to respect rules about top and bottom at crossings.

Figure 14: Classification of small knots. Wikipedia

We design algorithms by putting together all those ideas. It leads to simple
algorithms whose precise characteristic are given by Theorems 3.1.1, 3.1.2 and 3.1.3.
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It is not obvious to understand how the problem is discretized and this is extremely
important in this work. This is described in full details in the corresponding section
but here we can make an interesting remark. We use particular maps called system
of quads that have very interesting geometric properties. It gives a good compromise
between efficiency and a precise description of a geometry (often heavy in memory
and expensive to manipulate). The system of quads and their geometry are described
in details in the preliminaries.

1.2.2 Splitting Cycle

A key parameter of a surface is its genus. It can be seen as the number of handles
of the surface in the orientable case and twice the number of crosscaps otherwise.
We focus here on orientable surfaces. Simple curves on surfaces have two important
characteristics. The first one is contractibility. A curve is contractible when it can
be continuously deformed into a point. The second characteristic is separability. A
simple curve is separating if its complement has two connected components. A con-
tractible curve must be separating. Contractible simple curves can be characterized
by the fact that they must bound a disk on one side. However, non-contractible ones
can be separating or not. A splitting cycle is a simple closed curve that separates
the surface and that is non-contractible. It thus cuts the surface into two pieces of
genus at least 1. Note that the genus of the starting surface is the addition of the
genus of the two parts obtained by a cut along a splitting cycle. So only surfaces of
genus at least 2 may have a splitting cycle. In the continuous world every surface of
genus at least 2 can be split that way [Chambers et al., 2006] (see figure 15).

Figure 15: A splitting cycle in a continuous setting.

The interest of finding a splitting cycle is to use it to cut the surface into pieces
of smaller genus. It could be used to make proofs by induction or to build divide
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and conquer algorithms. It is thus natural to require a cycle in order to make a
proper cutting. A topological surface has infinitely many such cycles. Indeed, It
is easy to find some cycles on a topological surface like the one of figure 15 for
instance. Then any self-homeomorphism of the surface will transform any splitting
cycle another one. Self-homeomorphisms of surfaces can be seen as symmetries and
local contractions or dilatations. They lead to infinitely many different copies to any
cycle on the surface. In the discrete world things are totally different. The point is
that being simple has a different meaning. To cut properly a combinatorial map it
is reasonable to restrict to simple closed walks in the underlying graph. A splitting
cycle in the discrete sense does not exist in all combinatorial maps. In addition, it
is not easy to decide if a given map has one or not (see figure 16) since the problem
is known to be NP-complete for general combinatorial maps.

Figure 16: A splitting cycle in a discrete setting.

It was conjectured by Barnette in the eighties that maps constructed as assembly
of triangles with a simple induced graph (in other words simplicial triangulations)
must have a splitting cycle. It then was added by Mohar and Thomassen that it
may be possible to find a splitting cycle for any partition of the genus of the simple
triangulation. It has led us to introduce the type of a splitting cycle that is, in
the orientable case, the genus of each connected components of the surface after
the removal of the splitting cycle. A splitting cycle is said balanced if its type is
balanced. We found counter-examples to the last conjecture using embeddings of
complete graphs. For instance, we find that there exist embeddings of the complete
graph on 19 vertices on the orientable surface of genus 20 without balanced splitting
cycles.
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1.2.3 Triangulations of the Torus

Considering surfaces as combinatorial maps rises some natural questions. For in-
stance, given a surface Σ and a number n, how many maps with n vertices are
homeomorphic to Σ? How ”different” can they be? We focus here on a particular
kind of maps: triangulations. These are the maps with triangle faces without loops
or multiple edges. In order to be able to count them correctly it is generally easier to
count the rooted maps. A root is an oriented edge of a map or equivalently an angle
of a face. An automorphism of rooted maps is one that preserves the root. Most of
rooted triangulations have a trivial automorphism group [Richmond and Wormald,
1995] making them easier to count than unrooted ones.

A lot of work has been made for a lot of different kinds of maps, in particular
in the planar case. For instance, the number of distinct rooted triangulations of the
sphere with n+2 vertices is known to be 2(4n−3)!

n!(3n−1)!
since 1962 [Tutte, 1962]. It is quite

unusual to find such a simple formula. The number of maps with n vertices of a
given type is generally given by an inductive formula on n. Note that those formulae
are generally obtained by manipulating formal series.

The story of enumeration starts with the enumeration of sets that can be easily
counted. Typically the set of rooted embedded trees. Then when aiming at counting
a special kind of objects the first idea became to find a bijection between those
objects and a well known set. For our purpose let us consider the case of rooted
planar triangulations on n+ 2 vertices. They are in bijection with rooted embedded
trees of a special form. The details will not be given here but see figure 17 for
an illustration. This bijection allows to count the triangulations but also has a lot
of interesting consequences. The one that mainly makes sense with respect to the
content of this thesis is that we obtain uniform sampling of triangulated maps of size
n in linear time.

Figure 17: A bijection for rooted planar triangulations.

Our point in this thesis is the generalization of this bijection to toroidal triangu-
lations. First we remark that triangulations of the torus cannot be put in bijection
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with embedded trees because any map associated to a tree is planar (an embedded
tree cannot encode the topology of the initial map). The natural generalization of
trees here is unicellular toroidal maps meaning combinatorial maps with only one
face and the topology of the torus. The bijection we are looking for has to be explicit
and efficiently computable in order to be useful. The bijection in the planar case
is connected to Schnyder woods. A Schnyder wood of a planar triangulations is a
colored orientation of the edges of the underlying graph of the triangulation (see
figure 18). In that case the orientation and coloration is really easy to construct
since each color forms an oriented spanning tree. We achieve the generalization to
the torus by keeping the main advantages of the planar bijection.
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Figure 18: The local rule and an example.

1.3 Organization

In the next ”preliminary” chapter we explain all the notions that are necessary to
understand our solutions to the problems described above. As explained in the
introduction three points of view are involved in this thesis. We describe in details
the corresponding structures. We first recall some basic definitions. After those
basics we give the precise definitions we use for the continuous point of view and for
the discrete one.

Then we develop the Chapters 3, 4 and 5 corresponding to our solutions to the
three announced problems. It has lead to three articles that are submitted at the
time when this thesis was written. Each chapter is quite similar to the arXiv version
of the corresponding article with homogenized formulation and additional personal
remarks. The order in which the problems are presented has been chosen as follows.
First the geometric intersection problem is very natural and highlight a particular
translation of a continuous problem in a discrete setting. Then the splitting cycle
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problem illustrate the fact that combinatorial maps have particular properties that
cannot be easily guessed from continuous intuition. In particular, the concept of
simplicity is not naturally defined in the same way. Chapter 3 gives a quasi-linear
algorithm to test continuous simplicity while discrete simplicity is very difficult to
evaluate and needs to use heuristic to be calculated in practice. We get interested in
testing conjectures against random triangulations. The last problem brings us closer
to uniform sampling of triangulations of the torus and gives hope to a generalization
on general surfaces.



Chapter 2

Preliminaries

2.0 Basics

2.0.1 Topology

The definition of topology can be applied to define a lot of very different spaces.
We first give the most general definition. Then we look at the particular case of Rn

which is the most natural example and which is used as model to define particular
topological spaces called manifolds.

Definition Giving a topology to a set S can be understood as giving a sense to the
notion of neighborhood. A neighborhood of a point is a particular subset containing
that point. In practice defining a topology consists in giving the list O ⊂ P(S) of all
the basic subsets that can be considered as neighborhoods. Those subsets are called
open subsets. In order to have a topology some axioms are added. First O must
contain ∅ and S. Then O has to be preserved by unions and finite intersections. A
subset F is called a closed subset if and only if its complement is open. A function
f : (S,O) → (S ′,O′) is continuous if and only if for all O′ ∈ O′, f−1(O′) ∈ O. An
homeomorphism between (S,O) and (S ′,O′) is a bijective function h : S → S ′

such that f and f−1 are continuous. In other words, a homeomorphism preserves
the topology and homeomorphic spaces can be considered as identical.

Particular Case of Rn There are various ways to define topologies on Rn. We can
define trivial topology like O = {∅,Rn} or O = P(Rn). This is not of great interest
for our purpose. Let us look at the canonical way to define the topology of Rn. It
is done via the classical Euclidean norm on Rn (||(a1, · · · , an)||2 =

√
a2

1 + · · ·+ a2
n).

29
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The subsets defined as B(x, r) = {y ∈ Rn/||y − x||2 < r} are called open balls.
We want open balls to be open subsets. So the canonical topology of Rn is the one
generated by the open balls. Elements of O are thus subsets obtained by union of
finite intersections of open balls. In practice a subset O is open if and only if for all
x ∈ O, there exists l > 0 such that B(x, l) ⊂ O.

Properties We describe here some classical topological notions of particular inter-
est for our purpose. The first one is compactness. A topological set C (or a subset)
is compact if and only if from all set of open sets whose union contains C, a finite
subset can be extracted that covers C. In the particular case of Rn with its classical
topology compact subsets are exactly those that are closed and bounded. The other
notion that we will use is connectedness. A topological space S is connected if and
only if there does not exist two disjoint open subsets covering S. It can be understood
as S is connected if it cannot be decomposed into multiple parts with respect to the
topology. A connected component of S is a maximal subset of S that is connected.
Note that this can alternatively be defined as follows. S is said arc-connected if and
only if every pair of points of S can be joined by a continuous path in S. Note that
the two points of view are different in a general setting but will be equivalent for our
particular topological spaces. We quite always ask for connectedness because our
algorithms will be just run independently on each connected components otherwise.

Manifolds The idea of the definition of manifolds is to characterize the topological
spaces that locally ”look like” Rn. Note that ”looks like” in topology means there
exists a homeomorphism and we thus obtain the following definition. A n-manifold
is a non-empty (completely separable) topological space M such that for all x ∈ M
there exists an open neighborhood Ux of x and a homeomorphism ϕx : Ux → Rn

(note that completely separable is a technical assumption ensuring that M is not
”too big”). For instance the sphere Sn = {x ∈ Rn+1 s.t. ||x||2 = 1} is a n-manifold.
Manifolds with boundaries can be defined in the same way but instead of considering
the unique model Rn we also allow points of M to have neighborhoods homeomorphic
to the closed half-plane {(x1, · · · , xn) ∈ Rn/x1 ≥ 0}. In this thesis, we will focus
on topological issues of 2-manifolds. However, it is sometimes useful to consider
the geometric point of view (mainly in Chapter 3). In order to state properly some
interesting results we give the following definitions. That point is not critical in this
thesis so we do not go in full details and we assume some familiarity with differential
calculus.
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Additional Structures on Manifolds The canonical topology of Rn comes to-
gether with an inner product and so a notion of distance. In addition, Rn has a
structure of vector space. Let us define a structure that allows to carry over those
properties to manifolds. The main difficulty at first sight is that to each point x ∈M ,
the corresponding homeomorphism ϕx suggests a local behavior on Ux and there is
no reason that those behaviors should be coherent. To minimize those problems
we define the notion of atlas. An atlas of M is a collection of pairs (Ux, ϕx) for a
particular set of elements x ∈ M such that the union of the Ux covers M . Such an
atlas is sufficient to define a given structure on M . However, it remains that the
ϕx have to be coherent on the intersection of the corresponding Ux. Thus M is said
differentiable if and only if it admits an atlas all of which transition maps of the
form ϕxy = ϕx ◦ϕ−1

y |ϕ(Ux∪Uy) are C1. When M has that structure one can define the
tangent space TxM of M at x. It is a quotient of the set of all curves of M hitting x
and differentiable at x. Two curves are said to be equivalent in that setting if their
derivative are the same after going through ϕx. This is an equivalence relation and
allows to define TxM . TxM appears to be a n dimensional vector space so one can
define inner products on it: gx : (TxM,TxM)→ R. For it to be interesting we need
some regularity on those inner products. Let us consider X, Y : M → TxM two
smooth vector fields. If for all such X and Y , x ∈ M → gx(X(x), Y (x)) is smooth
then one say that g is a Riemannian metric and that (M, g) is a Riemannian
manifold.

Another important characteristic that can be easily defined using the same tools
is the orientability of a manifold. First let us look what we call an orientation of Rn.
An orientation of a vector space is a partition of the set of all its ordered basis. We
first arbitrary choose an ordered basis B0 and set it as a direct basis. Then another
ordered basis B is direct if the determinant of the transition matrix from B to B0 is
positive and indirect otherwise. Now let go to manifolds. As we see homeomorphism
can carry those notions of orientations. Once again a coherent atlas will define an
orientation on the manifold. In practice an atlas allows to construct an orientation
if and only if its transition maps are C1 and have positive Jacobian determinant.

Immersions and Embeddings In order to represent a n-manifold in an intuitive
way it is natural to think of representing it drawn in some Rm with m bigger than
n. For instance, a circle is a 1-manifold that is not possible to represent on the line
(R1). However it is natural to represent a circle in the plane. The example we are
particularly interested in is embedding 2-manifolds in R3. In that direction, we define
two ways to put a manifold into a bigger one. First an immersion of a differentiable
manifold N into another one M is a differentiable function f : N → M whose
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derivative is everywhere injective. Then in the same setting we call f an embedding
if it is a diffeomorphism onto its image. Note that an embedding can be defined in
a purely topological context by replacing diffeomorphism by homeomorphism. The
important point is the difference between the two notions. An immersion can create
self-crossings while an embedding is not allowed to. With that vocabulary, a regular
curve is just the circle immersed into a bigger manifold.

2.0.2 Algebra

We fix here all the vocabulary that is useful to describe the algebraic elements of
this thesis.

Groups We recall that a group G = (G, ·) is a set G and a binary relation · on G
such that:

• there is an element 1G ∈ G such that ∀g ∈ G, 1G · g = g · 1G = g.

• ∀g1, g2, g3 ∈ G, g1 · (g2 · g3) = (g1 · g2) · g3.

• ∀g ∈ G, ∃g−1 ∈ G such that g · g−1 = g−1 · g = 1G.

A function ϕ : (G, ·)→ (G′,×) is a homomorphism if it respects the group structures
associated to G and G′. It means that ∀g1, g2 ∈ G, ϕ(g1 · g2) = ϕ(g1) × ϕ(g2). We
often drop the relation and say that G is a group as an abuse of notation. A subgroup
H of a group G is a subset of G containing 1G that is a group with the relation it
inherits from G. The left cosets of H in G are the sets of the form g · H. Those
sets form a partition of G. It is natural to try to build the quotient of G by H
as the group formed by the left classes of H with an induced relation. It means
that (g1 · H) · (g2 · H) should be equal to (g1 · g2) · H. In order to obtain that
natural construction it is necessary that H verify the following relation: ∀g ∈ G,
g ·H ·g−1 = H. Such an H is called a normal subgroup. We will often speak of group
quotients without explicitly checking the normality of the subgroup but we have to
keep in mind that it is required. Remark that the elements g′ · g · g′−1 are called the
conjugates of g.

A group is abelian (or commutative) if for all g1, g2 ∈ G, g1 · g2 = g2 · g1. Alterna-
tively the condition can be written g1 ·g2 ·g−1

1 ·g−1
2 = 1G. The elements g1 ·g2 ·g−1

1 ·g−1
2

are called the commutators of G. If G is not abelian we can obtain a maximal abelian
group by quotienting it by the group generated by its commutators. We then obtain
the abelianization of G.
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Free Groups A free group F = (G, ·) is defined by giving a set of elements A
called the generators of G. We then construct an alphabet from A as A = A∪A−1

(where A−1 is the set of abstract inverses of elements of A). A word on A is a finite
sequence of elements of A. It is called a reduced word if it does not contain two
consecutive inverse elements. Then G is the set of all reduced words of elements of
A and · is the concatenation operation (with possible reductions). Note that the
element 1G is the empty word. For instance the free group with only one generator
is isomorphic to (Z,+). This notion is extremely useful since all groups can be
expressed as a quotient of a free group by a subgroup. In that idea, a group G
can be defined as a couple 〈A;R〉 where R is a set of elements of the free group
generated by A that are set to 1. Then we say that G is represented by generators
and relations. It is the quotient of the free group generated by A by the smallest
normal subgroup that contains R. For instance G = 〈a; a · a〉 is isomorphic to Z/2Z.
The relation a · a = 1G can be interpreted as ”a is of order 2”.

Group Actions An action ϕ of a group G on a set S is an application from G×S
to S such that: ∀g1, g2 ∈ G and s ∈ S, ϕ(g1, ϕ(g2, s)) = ϕ(g1 ·g2, s). ϕ is often noted
as a binary operator · making the last equation written as g1 · (g2 · s) = (g1 · g2) · s.
The orbit of s under the action ϕ is the set of all s′ ∈ S such that there exists a
g ∈ G such that s′ = g · s. Two orbits O(s1) and O(s2) can only be equal or disjoint
making the orbits a partition of S.

Lattices This part is about set orderings. This is a wide subject of study on its
own and we just give some useful definitions. Let S be a set. A binary relation ≤ is a
partial order on S if it verifies the following rules: (reflexivity) ∀x ∈ S, x ≤ x, (anti-
symmetry) ∀x, y ∈ S, x ≤ y and y ≤ x⇒ x = y and (transitivity) ∀x, y, z ∈ S, x ≤ y
and y ≤ z ⇒ x ≤ z. A minimal element m of (S,≤) is an element such that
∀x ∈ S,m ≤ x. A similar definition holds for the maximum M . Let us consider x
and y in S. Let m(x, y) be the set of elements z in S such that z ≤ x and z ≤ y.
If m(x, y) is not empty and admits a unique maximum we say that x and y admit a
meet. By reversing minimum and maximum we define the join of a pair of elements.
S is a lattice if any pair of elements of S admits a meet and a join. The first property
of lattices that we will use is that a lattice always have a unique minimal element.
Indeed if m1 and m2 are minimal elements then any element of m(m1,m2) is smaller
than m1 and m2 and is different from at least one of them leading to a contradiction.
A lattice is said distributive if and only if the two operations that associate the
meet and the join to a pair of elements are distributive on each other. Lattice are
often represented by their Hasse diagram. The Hasse diagram of an order relation
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is a diagram representing all the element of the set such that if x < y then x is
represented under y. An edge is added between x and y if x < y and there exists no
z such that x < z < y. In the case of a lattice we obtain a diagram that looks like
the one of Figure 19.

Figure 19: The Hasse diagram of a classical lattice. Wikipedia

2.1 Surfaces: a Continuous Point of View

2.1.1 Dimension 2 Manifolds

Dimension 2 corresponds to the notion of surface. In practice, we call surfaces 2-
manifolds that are connected and compact. A surface can have boundaries or not.
In that setting surfaces can be efficiently classified:

Theorem 2.1.1 (Classification of surfaces). Any compact connected 2-manifold with-
out boundary is homeomorphic to one of the following surfaces:

• The sphere.

• A connected sum of g tori T# · · ·#T (meaning g tori glued together).

• A connected sum of g projective planes P# · · ·#P .

In other words a surface without boundary is defined by its orientability and
an integer g called its genus. By Whitney’s theorem it is known that every 2-
manifold can be immersed in R3 (see figure 20). In fact, all orientable surfaces can
be embedded in R3 but no non-orientable surface (without boundary) can. Note that
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Figure 20: Orientable surfaces, a Möbius strip and a klein bottle

a surface is non-orientable if and only if it contains a Möbius strip. For surfaces with
boundary it works the same way but with an additional parameter b corresponding
to the number of boundaries of the surface. This means that there is only one surface
(up to homeomorphism) with fixed orientation, genus and number of boundaries.

2.1.2 Homotopy of Curves

A curve on a surface Σ is a continuous function γ : [0, 1] → Σ. It is a closed curve
if γ(0) = γ(1). In this case, it is possible to consider R/Z or S1 instead of [0, 1].
In topology, we usually consider as equivalent two curves that can be continuously
deformed from one to the other. Let us look at it in more details.

Free Homotopy Let γ1, γ2 : [0, 1]→ Σ be two curves on a surface Σ. We say that
H : [0, 1]× [0, 1]→ Σ is a free homotopy between γ1 and γ2 if and only if H has the
following properties: H is continuous, H(0, ·) = γ1(·) and H(1, ·) = γ2(·). If such an
H exists we say that γ1 and γ2 are freely homotopic. It defines an equivalence relation
between curves of Σ. A curve that is freely homotopic to a simple point is called
a contractible curve. A surface where all curves are contractible is said simply
connected. The sphere and the disk are the only two compact simply connected
surfaces.
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Fixed Point Homotopy In order to set an algebraic structure on the homotopy
classes of Σ it is required to have a binary relation to define a group structure. This
is correctly achieved by concatenation (noted ◦) after enforcing curves to have a
common initial point. So let us fix a point x0 ∈ Σ. We note Cx0 the set of all curves
γ(·) such that γ(0) = γ(1) = x0. a homotopy H is a free homotopy that verify:
∀t ∈ [0, 1], H(t, 0) = H(t, 1) = x0. This defines an equivalence relation ∼ on Cx0 .
We then define the first homotopy group or fundamental group of Σ as π1(Σ) = (Cx0/
∼, ◦). The group π1(Σ) is independent of the choice of x0 up to a (non-canonical)
isomorphism. Two curves in Cx0 are freely homotopic if and only if their homotopy
classes in π1(Σ) are conjugated. Homotopy of paths can be described analogously by
fixing the two extreme points of the paths instead of just one point. However, there
is no group structure.

Fundamental Groups of Orientable Surfaces Let Σg,b be the surface of genus
g with b boundaries. The most natural way to describe fundamental groups is to de-
fine them by generators and relations. We recall that a presentation of a group
is of the following form: G = 〈e1, · · · , en;R1, · · · , Rk〉 where e1, · · · , en are ele-
ments of G and R1, · · · , Rk relations. If b > 0 then π1(Σ) is a free group gener-
ated by 2g + b − 1 elements. If b = 0 then π1(Σ) is canonically represented by
〈e1, · · · , e2g; e1e2e

−1
1 e−1

2 · · · e2g−1e2ge
−1
2g−1e

−1
2g 〉. For instance π1(Σ1,0) = 〈a, b; aba−1b−1〉.

Since aba−1b−1 = 1 is equivalent to ab = ba, the fundamental group of a torus is
abelian. This is a very strong property but it is not the case for surfaces of genus at
least 2.

Configurations It is possible to have a more constrained notion of equivalence
of curves than free homotopy. Let us define an ambient isotopy as a continuous
map I : [0, 1] × M → M such that I(0, ·) is the identity map and for all s ∈
[0, 1], I(s, ·) is a homeomorphism of M . Then we say that γ1 and γ2 are equivalent
with respect to I if I(1, γ1(·)) = γ2(·). The equivalence classes under that relation
are called configurations. A given homotopy class is the union of many different
configurations. For instance a cycle is not in the same configuration as an ”eight”
even if the two are contractible and thus homotopic. In fact, isotopy do not allow to
change the ”arrangement” of a curve meaning that it cannot gain or lose crossings
for instance.
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2.1.3 Geometric Structures

Even for studying purely topological properties it may be useful to add a geometry
on the considered surface. We thus define the minimum structures that we need.

Geodesic A geodesic on a surface is a curve that locally minimizes the distance.
It is the kind of curves we imagine when we think of tight curves. In more details,
a curve γ : I → Σ is a geodesic if and only if for all x ∈ I there is a neighborhood
Ux of x such that ∀x1, x2 ∈ Ux, d(γ(x1), γ(x2)) = |x2 − x1| (where d is the distance
function of Σ). Alternatively, in the Riemannian case we can imagine a geodesic as a
curve with ”constant” tangent vector. It is not absolutely straightforward since the
tangent vectors lies on different tangent spaces. It is easily defined if Σ is embedded
in Rn. In that case, we look at the tangent vector of γ(x) by considering γ as a curve
in Rn. Its acceleration can be decomposed into two parts, one in the tangent space
of Σ at x and one that is normal to it. Then γ is a geodesic if this acceleration have
a constant null tangent component. Note that a geodesic only locally minimizes the
distance (see figure 21). In this figure we consider a torus represented in the plane
with the corresponding geometry then the two green lines are geodesics. Only the
first one realize the shortest path from A to B. So the second one does not minimize
the distance between A and B but do it in a neighborhood of each point (such as
the red zone on the right part of the figure).

Figure 21: Two distinct geodesics between A and B

Curvature Along with the definition of distances on Σ, the notion of curvature
appears. It describes how the surface looks like locally. Although its definition is
quite natural for curves (the inverse of the curvature radius) it is less intuitive for
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surfaces and some variants exists. Let us define the (Gaussian) curvature of Σ at
a point x0. We denote it by κ(x0). There are many equivalent ways to define the
curvature, we choose the easiest one with respect to our setting. To do that we
denote by A(r) the area of the set of elements of Σ at distance shorter than r from
x0. The curvature is given by the following formula:

κ(x0) = limr→0 12
πr2 − A(r)

πr4

Let us look how the neighborhood of x0 looks like with respect to its curvature.
If x0 has a neighborhood with the geometry of the plane then A(r) = πr2 and so
κ(x0) = 0. On a sphere this area is shorter than πr2 and so κ(x0) > 0. A negative
curvature can be found on the central point of a saddle (see figure 22).

Figure 22: Curvature.

The curvature of the surface is related to its topology via the Gauss-Bonnet
theorem:

Theorem 2.1.2 (Gauss-Bonnet). Let Σ be a surface without boundary, then∫
Σ

κdA = 2π · χ(Σ)

where χ(Σ) is the Euler characteristic of Σ.

The surfaces with constant curvature metrics are interesting. By the Gauss-
Bonnet theorem we see that the corresponding constant have the same sign as χ(Σ).
It leads to positive curvature for a genus 0 surface (realized by the two dimensional
sphere S2 with the induced metric of R3). A torus may have a flat geometry (the one
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of a Euclidean square with identified opposite sides). All surfaces of genus at least 2
can only have constant negative curvature. In that case we say that the surface has
a hyperbolic metric. It is difficult to illustrate Hyperbolic surfaces since Hilbert’s
theorem states that no hyperbolic surface can be immersed isometrically into R3

(with a C2 immersion).

Hyperbolic Metrics Surfaces with constant negative curvature (generally fixed
at -1) have very interesting properties and are intensely studied. We give the most
important point for our purpose: the unicity of geodesics. Indeed given a path P
from A to B in Σ there is only one geodesic curve homotopic to P that goes from A
to B. The properties of hyperbolic surfaces are significantly different from euclidean
ones. For instance consider the case of hyperbolic triangles (triangles whose three
sides are geodesics). The sum of the angles of a triangle T is strictly less than π. We
say that the complement to π of this sum is the angle defect d of T . The area of T
is proportional to d, so that A(T ) = d with normalized curvature. So the maximal
area of a hyperbolic triangle is realized by ideal triangles with all angles null and
is π.

2.1.4 Covering Spaces

Intuitively a covering of a surface is another surface that wraps around the first one
possibly infinitely many times. For instance it is possible to wrap an infinite band
around a cylinder. More precisely a surface C is a covering space of Σ if there is a
surjective map ρ : C → M such that for every x ∈ Σ there is a neighborhood Ux of
x such that ρ−1(Ux) is an union of disjoint open sets Ui in C each of which induces a
homeomorphism onto Ux. The Ui are called the covering sheets of Ux. Figure 23
illustrates the notion in the case of the cylinder and the infinite band. The first part
of the figure shows the idea of the wrapping of the band. Then let us assume that the
red circle is Ux. That part of the cylinder has infinitely many different pre-images
that we can see on the band. Let γ be the green curve on the cylinder. We call the
green line on the band a lift of γ.

Figure 23: A cylinder covered by an infinite band.
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Universal Cover If C is simply connected it is called a universal cover of
Σ. A surface has a unique universal cover C∞ up to homeomorphism. C∞ covers
all coverings of Σ so that we have the following diagram for any covering C of Σ:
C∞ → C → Σ. If Σ has no boundary and is different from the sphere then its
universal cover is homeomorphic to the plane. If it has boundary then its universal
cover is an infinite thick tree. It is extremely interesting to consider the automor-
phisms of the universal cover. Here an automorphism g is defined as follows: it is a
homeomorphism of C∞ such that ρ ◦ g = ρ where ρ is the covering map associated
to C∞. Those automorphisms form a group G = (G, ◦) such that G ' π1(Σ). In
addition, C∞/G ' Σ (note that it is not true for any covering). It follows that every
intermediate covering of Σ is the quotient of the universal cover by a subgroup of
the automorphisms group of the surface. It also has interesting properties for lifts of
curves.

Lemma 2.1.3. Let γ be a curve of Σ. The lifts of γ in C∞ are closed if and only
if γ is contractible on Σ. In addition, π(Σ) acts on the set of lifts of γ via the
automorphisms of C∞.

Note that the point of view can be reversed. The surfaces without boundary can
be constructed directly from a quotient of the plane by particular discrete groups
of homeomorphisms of the plane. The corresponding constructions appear naturally
with the support of geometry. Let us look at the useful models.

Geometric Models for Universal Covers The canonical metric on R2 has con-
stant null curvature. It is a good model for the universal cover of the characteristic
0 surface, the torus. Let us consider G the group of the translations by integral
vectors (a, b). The classical representation of the torus as [0, 1]2 with opposite sides
identified, correspond to the quotient of the plane by G (see figure 24). The two
corresponding identification correspond to the translations of vector (1, 0) and (0, 1)
that generates G. That construction is a natural way to define a torus with a constant
null curvature metric.

The constant curvature surfaces of higher genera cannot be obtained in a similar
way using a quotient of the Euclidean plane by a group of Euclidean isometries.
Instead we can use the hyperbolic model. A model of a surface homeomorphic to
the plane with a constant negative curvature is Poincaré disk, which is the open
unit disk with a particular metric. We do not detail the construction of that metric
but focus on the properties that are interesting for us. The main question is: What
do the maximal geodesics look like? The answer is that those geodesics are the
intersections between the unit disk and circles that are orthogonal to the unit circle.
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Figure 24: The universal cover of the torus.

Considering Euclidean lines as circles with infinite radius, diameters also appear as
maximal geodesics. We can make an analogous construction as the one of the null
curvature torus for hyperbolic surfaces by quotienting the Poincaré disk by groups
of hyperbolic translations. The polygon obtained as a fundamental domain of the
quotient is no longer a square like in the torus case but has 2g sides, see figure 25
for an illustration on the genus 2 surface.

Figure 25: The universal cover of the hyperbolic double torus and a fundamental
domain with the corresponding translations.

Hyperbolic Translations In order to facilitate the study of the state of the art
of Chapter 3, we give more details about hyperbolic translations. We are looking for
isometries of the Poincaré disk. The good candidates are the Möbius transforma-
tions. They are the transformations of C of the form z → az+b

cz+d
with a, b, c, d ∈ C.

The isometries of the Poincaré disk are the Möbius transformations that send the
unit disk into itself. Note that those isometries form a group isomorphic to PSL2(R).
Möbius transformations are characterized by their 2 fixed points (possibly at infin-
ity). A hyperbolic translation is an isometry of the Poincaré disk whose two fixed
points are on the unit circle. Its axis is the unique hyperbolic line between those two
points.
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2.2 Discrete Surfaces

2.2.1 Polygons

Definition We first present the very natural construction of surfaces as assem-
blies of polygons. A polygon is a plane figure bounded by an alternate sequence of
points and segments. Alternatively it is possible to think of circular polygons whose
boundary is a circle. The model is pointless here since we want to define topological
surfaces but becomes significant for geometrical constructions. In full generality a
polygon may have one or two sides as in figure 26. The corresponding polygons are
called monogons and bigons.

Figure 26: A monogon and a bigon.

All polygons are homeomorphic to disks. The points are named vertices and
the lines edges. It is possible to describe a surface by gluing together pairs of
oriented edges of a set of polygons. To identify two oriented edges ~e and ~e′ we
associate parametrizations of the corresponding lines. Note that in a discrete setting
we just need to know the correspondence of edges and the fact that the interior of
each polygon is an open disk to understand the topology of the surface. The edges
that are glued are interior edges of the final surface and the other remain boundary
edges. To obtain a 2-manifold, all the edges must appear in at most one identified
pair. However, a vertex can appear in any number of associations. So a vertex of
the final surface corresponds to an arbitrary set of vertices of the initial polygons.

Torus Case We can construct a torus in many ways, we focus on two different
constructions (see figure 27). A 4-gon with boundary (v1, e1, v2, e2, v3, e3, v4, e4) with
the following identification −−→v1v2 ≡ −−→v4v3 and −−→v2v3 ≡ −−→v1v4. The first identification gives
v1 ≡ v4 and v2 ≡ v3. The other v2 ≡ v1 and v3 ≡ v4 leading to a unique vertex
on the final torus. We can also construct a torus starting from a hexagon with the
identification depicted in figure 27. In that case we obtain two vertices. So the ”6-
gon torus” has one additional vertex and one additional edge compared to the 4-gon
version. In fact, it satisfies to a topological invariant called the Euler characteristic.
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Figure 27: Two different tori

Theorem 2.2.1 (Euler characteristic). Let Σg,b be a surface of genus g with b bound-
aries. Let V and E be the numbers of vertices and edges after identifications. Let
F be the number of faces (or the number of polygons involved in the construction of
Σg,b). Then, we have:

χ(Σg,b) = V − E + F = 2− 2g − b

In the previous examples we obtain 1 − 2 + 1 = 0 for the 4-gon, 2 − 3 + 1 = 0
for the 6-gon and it corresponds to χ(Σ1,0) = 2 − 2 ∗ 1 − 0 = 0. The proof of the
theorem is made by applying transformations to any surface in order to transform
it into a canonical one. For instance on our example, if we contract the green edge
of the 6-gon we obtain exactly the 4-gon representation. In general, the sketch
is the following (assuming for simplicity that the surface has no boundary). First
contract the edges of a spanning tree. Edge contraction can be shown to maintain the
relation. Then all the edges that bounds two different faces are deleted. At this point,
we have constructed a representation of the initial surface as a sole polygon with
identifications. Then It remains to show that we can always go from any one polygon
construction to a canonical one. Note that this can be made algorithmically [Lazarus
et al., 2001] and is often useful as a subroutine for topological algorithms.

Classical Constructions We just see that any surface constructed by polygons
can be transformed into a surface constructed from only one polygon. Reciprocally,
every surface can be constructed that way. For every orientable surface without
boundary we thus construct a canonical fundamental polygon that corresponds to
the surface by using a 2g-gon where g is the genus of the surface. Then the iden-
tification can be made such that we can ”read” the canonical relation of the fun-
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damental group of the surface around the polygon (see figure 28 where we read
aba−1b−1cdc−1d−1). Surfaces that have boundaries or that are non-orientable can
have canonical representation in the same idea.

Figure 28: Canonical polygon

Another special case occurs when all the polygons are triangles. In that case we
say that we have a general triangulation. It is important to remark that there are
many different possible definitions for triangulations. This one is the most general
one but is not the one used in this thesis.

2.2.2 Embedded Graphs

It is very natural to try to draw graphs on surfaces. In the previous construction
using polygons we see that graphs appear naturally as the identified edges of the
polygons. In that subsection we start from a continuous surface and we define what
drawing a graph on it means.

Graph Let V be a set of elements called vertices. A graph G is a couple (V,E)
where E is a collection of elements of V × V . The elements of E are called the
edges of G. Since E is a collection, a given pair can appears many times. In that
case we say that G has multiple edges. E can also have pairs (v, v) that we call
loop edges. If G has no multiple nor loop edges then it is a simple graph. A
lot of practical problems can be expressed in a graph setting. Therefore graphs are
intensively studied.

Embedding Let Σ be a surface. An embedding of G on Σ is a drawing of the
graph on the surface. It is natural to consider that vertices have to be represented
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as points and edges as curves between those points. In details, an edge e = (v0, v1)
is embedded as a curve γe : [0, 1]→ Σ such that γe(0) = v0 and γe(1) = v1. We also
require all γe|]0,1[ to be disjoint and to not intersect embedded vertices. A graph that
can be embedded on the sphere (or the plane) is called a planar graph. The image
of G corresponding to the embedding will often be considered as G on Σ (which is
a language abuse). Note that this definition becomes quite difficult to handle if one
wants to use it without avoiding any details.

Faces The faces of an embedding are defined as the connected components of Σ\G.
To a face can be attached a cycle in the graph called its facial walk. Reciprocally
it is possible to describe an embedding by giving the paths in G corresponding to
the faces. If each face corresponds to an open disk then we have a description of the
surface with polygons. In that case we say that the embedding is cellular and the
Euler characteristic is correctly defined by the formula V −E +F . In full generality
faces can be other open surfaces. Those surfaces can be exactly defined by their
orientability and two numbers g and b corresponding to their genus and number
of boundaries as usual. That kind of definition of surfaces is not very interesting
at first sight but it must be considered since it can be obtained after performing
transformations on a graph that was initially cellularly embedded (such as edge
deletion for instance).

2.2.3 Combinatorial Maps

Combinatorial maps give a good way to speak of graph embedding in practice.
Graphs embeddings remain interesting since they are useful to design geometric
algorithms. However, when the geometry of the defined surface is not fixed there
is no point to use something else than combinatorial maps. For more details on
combinatorial maps see [Mohar and Thomassen, 2001; Gross and Tucker, 1987].

Definition We want to have a concise description of topological surfaces. So a
combinatorial map M is defined as a base graph G with an added information that
describes the local behavior of the embedding around the vertices of G. For a vertex
v ∈ G it is well done by a circular ordering of all the edges incident to v. The set of
all that orderings are called the rotation scheme of M . This description leads to
efficient data-structures that are described below. Those data structure will be used
for the input of all the algorithms described in this thesis.
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Half-Edges Here we store combinatorial maps as a set of half-edges. Each half-
edge corresponds to an oriented edge on the map. There are two half-edges per edge.
A half-edge needs to have the information of which half-edge is the other half-edge
of its support edge. We call σ0 the correspondence (see figure 29). This edge also
needs to know the next half-edge in the rotation scheme around the origin vertex
of the half-edge. This correspondence is denoted by σ1. σ0 and σ1 can be seen as
permutations on the half-edges and are sufficient to construct the whole map. The
vertices are the orbits of the action of < σ1 > on the set of all half-edges (recall:
< σ1 > is the group generated by σ1 with the natural relation ◦, since σ1 is define as
a function on the set of half-edges the action is clearly defined). The faces are the
orbits of the action of < σ0 ◦ σ1 >. Note that the edges are also defined that way
using < σ0 >. Here all the orbits have size 2 since σ0 is an involution.

Flag Representation The same idea can be used in a more general way. We define
a flag as a triple (v, e, f) where v is a vertex, e an edge and f a face all incident to
each other. Then we define on the set of flags three involutions αi for i = 1, 2 or 3.
Each αi acts on a triple by changing its cell of dimension i (see figure 29). As in the
previous case we can define all entities as orbits. Vertices are given by < α1, α2 >,
edges by < α0, α2 > and faces by < α0, α1 >. An edge is always a set of four flags
but vertices and faces may have any cardinality. Remark that by globally identify
the pairs of flags linked by α2 we obtain the half-edge representation. However only
the flag representation allows to store non orientable maps.

Figure 29: Half-edge and flag representations

Duality There is a natural notion of duality for combinatorial maps. In particular,
the flag representation shows that the vertices and the faces have symmetric roles.
Thus the dual of a map M noted M∗ is given by taking the set of the faces of M
as the vertices of M∗. Then two vertices of M∗ are linked by an edge for each edge
of M that separates the two corresponding faces in M . Finally the rotation scheme
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of a vertex of M∗ is exactly equivalent to the facial walk of the corresponding face
in M . The key point is that the faces of M∗ corresponds to the vertices of M . So
the bidual of M is M . Note that if M has a flag representation (α0, α1, α2) then M∗

admits (α2, α1, α0) as flag representation.

Tree-Cotree Decomposition By considering both the map M and its dual it
is possible to give a nice partition of the edges. We begin by taking a spanning
tree T of the primal map. It uses one less edges than the number of vertices of
the primal graph. We remove the edges of T from the dual graph. The tree that
we removed is not separating, so the remaining dual graph is connected. It is thus
possible to take a spanning tree C of the remaining dual. We call X the set of the
remaining edges (X can be empty). The triple (T,C,X) is called a tree-cotree
decomposition of M . Let us look the cardinality of X. Let v, e and f be the
number of vertices, edges and faces of M . T contains v − 1 edges and C, f − 1.
Then, e = v+ f − 2 + 2g = (v− 1) + (f − 1) + 2g. We conclude that X has 2g edges.
In particular, X is empty if and only if M has 0 genus (see figure 30).

Figure 30: A tree-cotree decomposition of a plane map.

2.2.4 Simplicial Complexes

We quickly define simplicial complexes. It is a particular discrete construction that
is useful in a lot of situations. In particular it is very easily extended to higher
dimension and it allows to give a simple definition for homology.
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Algebraic Description Let us consider a non-empty set V of elements called
vertices. Then a simplicial complex is a set of non-empty subsets of V containing
all the singletons and with the following hereditary property: if C is in S then all
non-empty subsets of C are in S. We call a n-cell of S a C ∈ S that contains n+ 1
elements of V . The dimension of a simplicial complex is the maximum n such that
S has a n-cell. This structure can be interpreted as a topological object, we describe
the case of 2-complexes.

Topology A simplicial complex of dimension 2 has three kinds of elements different
from the empty set. Singletons are considered as vertices. 1-cells are the edges of the
complex and the 2-cells its faces. It can easily be interpreted as a surface defined by
polygons. Here the polygons are triangles since faces contain exactly 3 vertices. By
the definition of simplicial complexes the boundary of the faces are edges and vertices
that belong to S. Just as with polygons, not all simplicial complexes of dimension 2
correspond to a 2-manifold. For instance, it is necessary that at most 2 faces share
a given edge.

Simplicial Triangulations As all faces of a surface defined as a simplicial complex
are triangles it is natural to think of it as triangulations. However, all the general
triangulations cannot be described that way. Simplicial complexes do not allow more
than one k-cell defined by a given subset of vertices. So a simplicial triangulation
cannot have multiple edges. It cannot have loop edges neither. Finally every general
triangulation whose induced embedded graph is simple is simplicial except for the
triangle on the sphere. In that particular case there are two triangles with the same
vertices.

2.2.5 Homology of Surfaces

Homology is an alternative to homotopy. It gives another way to describe the equiv-
alence of two curves. For convenience we describe homology on simplicial complexes.
The same definition works in the other settings we described above with slight mod-
ifications.

k-Chains A path in a simplicial complex has to be composed of 1-cells since it has
dimension 1. The walks in the 1-skeleton of the complex (the subcomplex obtain
from the initial one by only keeping cells of dimension less or equal to 1) correctly fill
that intuition but we are looking for a slightly more algebraic setting. Generally, we
would like to define an abelian group structure on the set of k-cells. The case k = 1
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corresponding to the ideas of paths. The k-cells must be considered as oriented so
if e is an edge with a given orientation then −e is the opposite edge. Such a group
needs to be able to associate something to c+ c′ for any k-cells c and c′. We consider
all formal sums of k-cells with Z coefficients that we call k-chains. Let Ck be the set
of k-chains. We define the boundary operator ∂k : Ck → Ck−1 as a homomorphism
that associates to each oriented k-cell the alternate sum of its boundary (k−1)-cells.
With those definitions, it can be understood that a 1-chain is a generalized path.

First Homology Group Let us consider Ker(∂1). It is composed of 1-chains
with null boundary. Paths without boundary are just closed paths we thus call the
elements of Ker(∂1) cycles. More generally, a cycle is a formal sum of closed paths.
Then Im(∂2) is the set of cycles that bound a union of faces. Typically a cycle
that bounds a face has to be equivalent to the trivial cycle. The first homology
group is defined as H1 = Ker(∂1)/Im(∂2). It is the set of cycles quotiented by the
subset of the cycles generated by the face cycles. Hi can be defined in the same way.
H1 is related to the fundamental group quite directly. The first homology group is
the abelianization of the first homotopy group. For instance π1(S1) ' H1(S1) since
π1(S1) is abelian but π1(S2) 6= H1(S2) where Si is the orientable surface of genus g.
In general, we have H1(Sg) ' Z2g.

2.3 Constructions on Discrete Surfaces

2.3.1 Curves

Edge-Paths The natural way to obtain curves on a combinatorial map is to make
a walk on the edges of the map. It leads to a discrete analogue for curves, let us
describe it in details. An edge-path is defined as a sequence of oriented edges such
that each edge end coincides with the next edge origin. If we consider embedded
graphs then we can also directly interpret edge paths as curves on the underlying
surface Σ. Since faces are open disks it is possible to show that edge paths faithfully
represent the curves on a surface. More formally, we have:

Proposition 2.3.1. Let Σ be a surface, γ a closed curve on Σ and M a combina-
torial map homeomorphic to Σ. There is an edge path P in M such that the curve
corresponding to P in Σ is freely homotopic to γ.

The same kind of results holds for paths on Σ.
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Immersions When an edge path uses twice the same edge its direct image has
infinitely double points. In that case we say that the curve is not in general position.
In the continuous setting it is avoided by adding a little perturbation to the curve.
In the discrete world, we manage to replace perturbations by adding a structure
to the edge paths. We thus obtain general position realizations of our edge paths.
More precisely, we call each edge of an edge path an occurrence. For each edge
of the initial map used by the path we add a transverse ordering on the multiple
occurrences going through it. Then a continuous realization of the total structure
consists in attaching thin bands replacing the edges of the map and small disks for
the vertices. The transverse orderings of occurrences allow to construct a continuous
curve in general position (see figure 31).

Figure 31: An ambiguous representation and its two possible immersions.

Combinatorial Crossings For continuous curves a crossings between two curves
or a self-crossing of a curve is naturally defined as a double point. In our framework,
we want to give a combinatorial definition of a crossing that corresponds to the
continuous idea and that is not ambiguous. With our definition of immersion as
edge-paths with additional transverse order, it can be done quite naturally. The
idea is that a continuous realization of an immersion should be the following. We
thicken the graph of the combinatorial map by replacing vertices by small disk and
edges by small cylinders (see figure 32). Now it is possible to put the occurrences
inside the cylinders in an order corresponding to the local transverse ordering. It
implies that no double point can appear in the cylinders. In the disk we decide to
just add a segment to join the occurrences that are adjacent in the edge path. Then,
for each pair of occurrences linked in the same vertex there is a double point if and
only if the four border points of the occurrences alternate (as in figure 32 on the
right). This can be described purely combinatorially since the order in which the
occurrences appears around a vertex is given by the rotation scheme of the vertex
and the transverse orderings.

Cross-Metric Surfaces Alternatively, a dual approach is possible. We start with
a combinatorial map but instead of considering curves as edge paths we consider
curves in general position with respect to the map. It means that we only consider
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Figure 32: A graph and its corresponding thicken construction.

curves that intersects the edges of the map transversely and do not intersect the
vertices. In practice, to store such a curve it is needed to store the intersections of
the curve with the map and the relative order of the crossings along a fixed edge.
Then the length of a curve is given by its number of intersections with the map that
is its length as a walk in the dual map.

2.3.2 Diagrams and Coverings

Diagrams and coverings are maps along with a projection onto another map. Cov-
erings naturally appear as continuous constructions and are easily discretized. Dia-
grams are less constrained constructions that are interesting for our purpose. Let us
give the detailed definitions.

Coverings The translation from the continuous notion is quite straightforward. A
combinatorial map C is a covering of a combinatorial map M if and only if there
exists a covering function δ : C → M . Such a function has to send vertices to
vertices, edges to edges and faces to faces. It also has to be locally bijective meaning
that each rotation around a vertex and each face walk are preserved by δ. Note that
we need to allow infinite maps for C because we often want to work in the universal
cover. It is quite strange since we claimed that combinatorial maps are used in order
to make direct implementations. In practice this will be handled by constructing
just a finite part of the universal cover.

Diagrams The definition is very similar to the one of coverings. A map D is
a diagram on M if there is a diagram function: ∂ : D → M . The only difference
between a diagram map and a covering one is that no bijection is required. It implies
for instance that the neighborhood of a vertex v in D can be sent many times on
the neighborhood of ∂(v). The question is: why is it interesting? The main answer
for our purpose is the following property illustrated by figure 33. A diagram is said
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reduced if it does not send two adjacent faces to the same face of M with opposite
orientations.

Proposition 2.3.2 ([Van Kampen, 1933]). A cycle γ in M is contractible if and
only if there is a reduced disk diagram ∆γ whose boundary cycle is sent to γ by the
diagram map.

Figure 33: A contractible cycle on the torus and the corresponding diagram.

It substantiates the natural idea that a contractible cycle morally bounds a disk.
Unfortunately the disk is not necessarily embedded and the diagram is the best we
can have in the general case. In the same way we can characterize pairs of homotopic
cycles by trying to make them bound a cylinder. Once again the diagrams give a
good translation of the intuition.

Proposition 2.3.3 ([Lyndon, 1966]). Two cycles cycle γ1 and γ2 in Σ are freely
homotopic if and only if there is a reduced annular diagram ∆γ1,γ2 whose boundary
cycles are sent to γ1 and γ2 by the diagram function.

2.3.3 Discrete Geometry

Construction We want to put a particular geometry on a combinatorial map.
First the length of the curves is defined as the length of the corresponding edge-path
(eventually with associated weights). For triangulated maps a natural idea is to set a
fixed geometry for the triangles and then glue them as smoothly as possible. Models
for triangles can be Euclidean models or hyperbolic ones. Again we can let some
freedom on the choice of the angles or ask for equilateral Euclidean triangles or ideal
hyperbolic ones. In the general case, many construction are possible, we decide to
use Euclidean triangles. We assume that each face subdivided into flat triangles as
in figure 34. Now everything is flat except the neighborhood of each vertex and the
neighborhood of the virtual vertex that we have added in each face. We need to
define the angles of the corners of the faces. Since no natural construction appears
let us assume that we set an arbitrary θa value to every angle a. Since it is purely
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combinatorial and in order to simplify formulae we normalize the angles such that
a full tour is set to 1 (a direct approach should have lead to 2π). So for each flat
triangle the sum of its three angles is 1

2
.

Figure 34: The geometry of the faces.

Discrete Curvature We are now able to set a notion of curvature. Let us consider
the formula we used to define the curvature. Let r be a positive number and v a vertex
of the underlying combinatorial map M . In each triangle corner at v with angle θa
the part of area that is added to A(r) is πr2θa by the normalization convention. The
area around v is the sum on the corners around it. Let N(v) be the set of corners

around v. The curvature should be κ(v) = 12
πr2−πr2(

∑
a∈N(v) θa)

πr4
= 12

r4
(1−

∑
a∈N(v) θa).

The factor 12
r4

shows that the vertices are singularities in the continuous corresponding
model. After another normalization we define κ(v) = 1 −

∑
a∈N(v) θa. If the sum is

less than 1 we obtain positive curvature like on a sphere and if it is more than 1 then
we obtain a negative curvature. In the case where the surface has boundaries we set
at a flat angle (1

2
) each boundary angles of each vertex. Now let us look at the face

vertices. The sum of the angles of a triangle is 1
2

so if vf is such a vertex its curvature

should be: κ(f) = 1 −
∑

a∈N(vf ) θa = 1 −
∑

a∈N(vf )(
1−θa1−θa2

2
) = 1 − d(f)

2
+
∑

a∈f θa
where d(f) is the degree of the face f . This definition works well since it leads to
the following theorem.

Theorem 2.3.4 (Discrete Gauss-Bonnet). Let M be a combinatorial map. In the
setting described above the following formula holds:

χ(M) =
∑

v∈V (M)

κ(v) +
∑

f∈F (M)

κ(f)

Proof. We first make the calculation for surfaces without boundary.∑
v∈V (M) κ(v) +

∑
f∈F (M) κ(f)
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=
∑

v∈V (M)(1−
∑

a∈N(v) θa) +
∑

f∈F (M)(1−
d(f)

2
+
∑

a∈f θa)

= |V (M)| −
∑

a θa + |F (M)| − 2∗|E(M)|
2

+
∑

a θa
= |V (M)| − |E(M)|+ |F (M)| = χ(M)
Consider the case of surfaces with boundary. Let B be the number of boundary
angles (or equivalently the total length of the boundaries).∑

v∈V (M) κ(v) +
∑

f∈F (M) κ(f)

=
∑

v∈V (M)(1−
∑

a∈N(v) θa)−
1
2
B +

∑
f∈F (M)(1−

d(f)
2

+
∑

a∈f θa)

= |V (M)| −
∑

a θa + |F (M)|−1
2
B − 2∗|E(M)|−B

2
+
∑

a θa
= |V (M)| − |E(M)|+ |F (M)| = χ(M)

2.3.4 An Interesting Example: the Test of Homotopy

We now have set all the general constructions we need. Let us look at how it behaves
in practice. The problem we are interested is the following: For two given curves,
how to decide if they are homotopic or not? This is extremely classical, let us look
at what can be done about this. With the continuous definition to show that two
curves are homotopic it is necessary to give a (free) homotopy between them. This
is not easily translated into a discrete setting. The following construction appears
to be the good one.

Combinatorial Homotopies An elementary homotopy on a combinatorial
curve c consists in adding or removing a spur(two consecutive identical edges with
opposite orientations), or replacing in c a possibly empty part of a facial walk by its
complementary part. For a free elementary homotopy we can also apply a circular
shift to the indices of the closed curve c. The equivalence relation generated by (free)
homotopies is called combinatorial (free) homotopy.

An elementary move of a combinatorial immersion consists either in an elemen-
tary homotopy or in an adjacent transposition, i.e. in exchanging the left-to-right
order of two occurrences in a same arc where one occurrence is next to the right of
the other. We further require before performing an elementary homotopy that the
immersion is in good position. This means, if the elementary homotopy applies
to a nonempty part u of a facial walk of some face, that each arc occurrence in u
should be the rightmost element of its arc, i.e. the most interior to the face. When
removing a spur, we just require that the two arc occurrences to be removed are
adjacent in left-to-right order. See Figure 35. The elementary homotopy does not
modify the order of the remaining arc occurrences. When inserting a spur we make
the inserted arc occurrences adjacent and when inserting part of a facial walk we
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u

v

u

Figure 35: Left, the removal of a spur in good position. Right, two elementary
homotopies replacing a subpath u of a facial walk by the complementary subpath v.
In the upper right, v is empty. The immersions being in good positions, crossings
may only appear or disappear by pairs.

insert each arc occurrence after the rightmost element of its arc. Remark that by
a sequence of adjacent transpositions we can always enforce an immersion to be in
good position.

Algebraic Solution However such a direct approach is not very efficient. In an
algorithmic point of view the most natural idea is to consider curves as words in a
given basis (if we are looking for free homotopy it may be needed to add a spur to the
curves to make them reach the base point). First we look at the elementary problem
of deciding if a given word is equivalent to the empty word. It is sufficient to solve
that problem since to know if w and w′ are words that correspond to homotopic
curves it is sufficient to be able to decide if w · w′−1 is the empty word. It first can
be frightening since this problem is known to be undecidable in the general case.
Fortunately it is not the case for surfaces. An important point is to be able to
obtain a decomposition of the input curves in a given basis. This can be done the
following way. Starting from a combinatorial map it is always possible to contract
the edges of a spanning tree to obtain a map with one vertex. Then edges that bound
two different faces can be deleted to finally obtain a set of 2g loops generating the
fundamental group of the underlying surface. Such a map is called a reduced map.
By this construction, a curve on the initial map can be traduced into a word on the
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generators corresponding to the 2g loops.

Universal Cover and Dehn’s Algorithm The universal cover gives a nice char-
acterization of contractible cycles. A cycle is contractible if and only if its pre-image
on the universal cover is a union of closed curves. After going to a bouquet of circles
Dehn has been able to show the following lemma.

Lemma 2.3.5 ([Dehn, 1912]). Let Σ be a surface. Consider a presentation of π1(Σ)
with 2g generators and 1 relation r = 1. Let w be a reduced word in the generators
of π1(Σ) and their inverses that is equivalent to the empty word. Then w contains
more than half a copy of r as a subword.

This leads to a gready algorithm that runs in time O(f(g)(n+ l)) where g is the
genus of the map, n is the complexity of the initial map and l is the length of the
curves. This can be strongly improved by considering geometric matters. We then
describe the construction of the systems of quads that are combinatorial maps with
extremely interesting geometric properties.

2.3.5 System of Quads

Definition Let us first describe what we call a system of quads. Let Σ be the sur-
face of genus g. We want to start from a reduced map with 2g loops. Alternatively
we can start with a 4g-gon whose sides are pairwise identified leading to a genus g
surface. It is equivalent to give a representation of the π(Σ) and choose the identi-
fication such that we read the relation around the polygon. For instance if g = 2,
the following different words can be read in clockwise order around an octogon to
obtain Σ: abcda−1b−1c−1d−1, aba−1b−1cdc−1d−1 etc. All the different representations
are allowed, systems of quads do not require to be based on a canonical one. Then
we add a vertex in the sole face of the map and link it to all the copies of the initial
vertex in the polygonal representation. Finally, we remove the initial edges. The re-
sulting graph is called the radial graph of the initial reduced map. Clearly all faces
are quadrangles (see figure 36). Just to get a better understanding of what happen
let us check Euler characteristic. Since the polygon has 4g vertices the system of
quads has 4g edges. Then we have 2g faces because all faces have four sides. It gives
2− 4g + 2g = 2− 2g = χ(Σ).

Transformation into a System of Quads A first thing to remark is that it is
easy to transform any combinatorial map into a system of quads. We just apply
the procedure described in the previous subsection (contract a spanning tree and
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Figure 36: A system of quads of genus 2

remove edges) to obtain a reduced map. Then the system of quads is obtained by
constructing the corresponding radial graph. This procedure is easily done in linear
time with respect to the size of the initial map. Here an important point has to be
developed: what happen to curves in that process? The operations needed to obtain
the system of quads do not allow to preserve the edge paths. What we want for a
curve on the initial map is to be transformed along that process in order to have
a final edge path homotopic to the initial one. While contracting edges it is easy
to maintain any given curve without increasing its size. The removing part is more
tricky. Let us fix the final reduced map and consider the corresponding polygonal
representation. If the curve go through an edge that it removed then this edge can
be represented as a cord of the polygon. it is necessary to replace that edge by a
path on the boundary of the polygon. Since we can choose the shorter one it may
multiply the length of the curve by g. Better can be obtained if the curve is not
updated directly but when the second vertex is added. At this moment the curve
can be stored as a edge path of edges of the polygon and cords. Any pair of points
of the polygon can be joined by a length 2 path in the radial graph. It leads to a
length that can be multiplied by at most 2. This is a key point in the study of the
complexity of algorithm involving systems of quads.

Geometry of Systems of Quads We use the construction described below. We
need to make a choice for the angles at the corners of the quads. We thus decide to
set the angles such that the face vertices have flat geometry. It is done by putting 1

4

for all the angles. Indeed in that case κ(f) = 1 − 4
2

+ 4 ∗ 1
4

= 1 − 2 + 1 = 0. With
that setting the faces of our systems of quads are flat squares. We will be mainly
interested by surfaces of genus at least 2. In that case we have a strictly negative
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curvature at every vertex. Adding that geometry to the systems of quads allows
to give simple proofs to some structural theorems. We are interested in the shapes
of geodesics in such a surface. In general the interest of geodesics in hyperbolic
metrics is their uniqueness. Here, we hope to have a geometry that is not far from
a discrete hyperbolic metric. Ideally we would like to have a nice way to start from
any curve and then tighten it to the corresponding unique geodesic. Some easy
modifications will tighten a curve (see figure 37). The first curve has a spur that can
be just removed. The second one has a bracket that is a turn sequence 1, 2 · · · 2, 1 or
−1,−2 · · · − 2,−1. The turn sequence of a path is the number of corners it leaves
on its left at each of its vertex. We define the edge-paths without spurs nor brackets
as combinatorial geodesics. The following proposition is a first justification of
this definition.

Figure 37: Spur and bracket removing.

Theorem 2.3.6. A non-trivial contractible cycle in a system of quads of genus at
least 2 has either a spur or four brackets.

Proof. Let C be a non-trivial contractible cycle of a combinatorial map M . Let us
consider the disk diagram ∆C given by proposition 2.3.2. The boundary of ∆C is
labeled by C. Gauss-Bonnet gives us that

∑
v∈V (∆C) κ(v) +

∑
f∈F (∆C) κ(f) = 1 since

the Euler characteristic of a disk is 1 (null genus and 1 boundary). Because of the
assignments of the angles it becomes

∑
v∈V (∆C) κ(v) = 1. Let us consider a vertex v

in the interior of ∆C . κ(v) = 1 −
∑

a∈N(v) = 1 − 1
4
d(v). d(v) is at least the degree

of the vertex of M it is projected to by the diagram map. It implies that d(v) is at
least 2g and so at least 8. So κ(v) < 0. Assume now that v is on the boundary of ∆C

then κ(v) = 1 −
∑

a∈N(v)−
1
2
Bv where Bv is the number of boundary angles around
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v. As soon as Bv is at least 2 then κ(v) ≤ 0. In fact ∆C has the structure of a tree of
open non-empty disk with cycle boundary (see figure 38). Without loss of generality
we can assume that ∆C is a disk with a cycle boundary and non-empty interior (a
connected component of the dual of ∆C in practice do that role, if there is no then
∆C is flat and C has a spur). Now we label each vertex v on the boundary of ∆C

with the number of angle nv it has inside ∆C . If nv = 1 then κ(v) = 1
4
, if nv = 2

then κ(v) = 0 else κ(v) ≤ −1
4
. Let us consider the sequence of the nv with respect

to their order on the boundary. If we drop the 2 we have a cyclic word with at least
4 more 1 than other numbers in order to have a sum of curvature of 1. It implies
that there are 4 pairs of consecutive 1. Adding the 2 back we obtain sequences of
the form 1, 2 · · · 2, 1 that will project on the 4 announced brackets (signs are positive
because we do not define the orientation of ∆C but it can be positive or negative
after the projection).

Figure 38: The general shape of ∆C .

By looking the proof of the previous proposition we see that if ∆C has an interior
vertex then we must have more vertices corresponding to an angle 1

4
to have the

correct curvature. It proves the following.

Theorem 2.3.7. A non-trivial contractible cycle in a system of quads of genus at
least 2 that labels the boundary of a disk diagram with at least one interior vertex has
either a spur or five brackets.
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Consequences of the Previous Results Those results will be useful in chap-
ter 3 to describe the exact behavior of combinatorial geodesics in the systems of
quads. As announced it is also very useful to design an optimal algorithm for the
problem of testing homotopy. That work has been first imagined by Lazarus and
Rivaud [Lazarus and Rivaud, 2012] and then its formulation has been significantly
simplified by Erickson and Whittelsey [Erickson and Whittelsey, 2013]. The idea is
the following. We want to construct a canonical curve homotopic to each curve we
want to compare. A unique geodesic would be the perfect canonical curve for that
purpose. Unfortunately, using the tightening of Figure 37 is not sufficient to obtain
a unique element. It can be proved that adding a move that pushes the curve to the
right is sufficient (see figure 39). It leads to a linear algorithm to test the homotopy
of two curves. In details it runs in time O(n+ l) where n is the size of the map and
l the length of the curves. The n comes from the reduction from the initial map to
a system of quads and the l to the tightening procedure.

Theorem 2.3.8 ([Lazarus and Rivaud, 2012; Erickson and Whittelsey, 2013]). The
canonical form of a combinatorial closed curve of length ` on a system of quads can
be computed in O(`) time. It is the unique homotopic curve that contains no spurs
nor brackets and whose turning sequence contains no -1’s and contians at least one
turn that is not -2.

Figure 39: Pushing to the right.
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2.4 Structure of Combinatorial Maps

2.4.1 Planar Maps

The result of Chapter 5 is a generalization to the torus of a result about plane
triangulations. It is important for us to try to have the best possible formulation
for our result because we aim at extend our generalization to higher genus. We first
describe the classical constructions for the planar case.

Rooted Planar Maps A planar map is a combinatorial map of genus 0. Unless
specified we will only consider maps maps without boundary. As described in Sec-
tion 2.2.3 we store a map in a flag data-structure. We will consider rooted maps
where the root can be any flag of the map. The main reason for considering rooted
maps is that it is very simple to check if two rooted maps are isomorphic. Indeed,
it is sufficient to fix a labeling of the flags of one of the maps and then, starting
from the root of the other map, we can report the labeling of the first map to the
second one. If it can be done consistently with respect to the three involutions α0, α1

and α2 then the two maps are isomorphic (we implicitly consider connected maps).
An unrooted map without symmetry i.e. whose group of automorphisms is trivial,
corresponds to k rooted maps where k is the number of flags. When the map has
symmetries, its unrooted version corresponds to a smaller number of rooted maps.
For this reason, it is not obvious to obtain a uniform sampling of unrooted maps
from a uniform sampling of rooted maps. However, since most of the maps have
trivial automorphism group, it is generally considered as a good approximation.

Leaf-Rooted Embedded Binary Trees We begin with a very specific kind of
maps that can be easily counted. A tree is binary if every vertex has degree degree 3
or 1. As usual, vertices of degree 1 are called leaves and the other vertices are called
nodes. A map whose underlying graph is a tree has only one face. Let us denote by
B the set of binary trees rooted at a leaf. Remark that an element in B can either be
a single edge between a leaf and the root or a node connected to the root and to two
binary trees. Let Bn be the number of binary trees with n non-root leaves (and one
more leaf for the root). The above remark leads to the following recurrence relation:

B1 = 1 and Bn =
∑

n1,n2∈N∗/n1≤n2,n1+n2=n

Bn1Bn2 for n ≥ 2

Let B(x) be the formal power series
∑

n>0Bn · xn. The recurrence relation we easily
get B(x) = x+B(x)2. In general, this kind of functional relation is the best we can
hope but in this case, it leads to the following counting formula.
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Theorem 2.4.1. Let Cn = 1
n+1

(
2n
n

)
be the nth Catalan number. With the above

notation we have: Bn+1 = Cn.

Triangulated Polygons The Catalan numbers also appear in the counting of
triangulated polygons. It is interesting for us to see how the triangulated polygons
can be counted via a bijection with binary trees. The bijection is illustrated in
Figure 40. The idea is that the dual of a triangulated polygon is a binary tree. Since
triangulated polygons are maps with boundaries the notion of dual of Section 2.2.3
has to be adapted. To every triangulated polygon we associate a binary tree whose
nodes are the triangles of the polygon and whose leaves are the boundary edges of
the polygon. To node are connected by an edge if the corresponding triangles are
adjacent. A leaf is connected to the triangle node that it bounds. We define a rooted
polygon as a polygon with one boundary edge marked. The rooted triangulated
polygons with n boundary edges are in bijection with the rooted binary trees with
n − 1 non-root leaves. It follows that there are Cn−2 = 1

n−1

(
2n−4
n−2

)
distinct rooted

triangulations of a polygon with n edges.

Figure 40: The bijection between triangulated polygons and binary trees.

Bijection for Planar Maps We have seen that trees can be counted easily thanks
to a recursive formula. In order to count planar maps we shall define a bijection
with a particular kind of trees. Given a rooted combinatorial map M the next
procedure provides the desired tree. We perform a depth-first search from the root
of M considering the rightmost non-visited edge at each step (see Figure 41). We
construct the depth-first search spanning tree and we cut the edges that are not
used by the spanning tree. Then this tree is decorated by oriented half-edges that
represent the non-used edges. A non-tree edge gives rise to an outgoing edge from its
most recently visited vertex and to ingoing edge on the other side. This procedure
is called a depth-first search opening and was introduced by Schaeffer. We can
recover M from the decorated tree. For this we remark that the half-edges form
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a well parenthesized word when read from the root. For more details on both this
constructions and its various implications see [Schaeffer, 1998]. For instance, this
bijection provides a nice and simple explanation for Tutte’s formula:

Theorem 2.4.2. [Tutte, 1963] The number of rooted planar maps with n edges is:

2 · 3n(2n)!

n!(n+ 2)!
=

2 · 3n

n+ 2
Cn

Figure 41: The depth-first search opening procedure.

2.4.2 Schnyder Woods

3-Orientation Let G be a graph. An orientation O of G is a choice of orientation
for each of its edges. O is a 3-orientation if and only if each vertex has outdegree 3.
Let M be a planar simple triangulation with underlying graph G. We fix a face of
M as the outer face that we call the special face. We denote by v0, v1 and v2 the
3 vertices of the special face. Let n, e and f be respectively the number of vertices,
edges and faces of M . We have 2e = 3f since M is a triangulation and n− e+ f = 2
by Euler formula. It follows e = 3n − 6. If O was a 3-orientation of G then we
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would have e = 3n which is a contradiction. In order to define 3-orientations for
triangulations, we decide to forget the 3 vertices and the 3 edges of the special face.
We obtain n′ = n − 3 interior vertices and e′ = e − 3 = 3n − 9 = 3(n − 3) = 3n′

interior edges. We call a 3-orientation of M any orientation of its internal edges such
that all its internal vertices have outdegree 3.

Theorem 2.4.3. [Kampen, 1976] Every plane triangulation admits a 3-orientation.

Proof. All plane triangulations can be reduced to a tetrahedron by performing a se-
quence of edge-contractions [Rademacher and Steinitz, 1934]. Since the tetrahedron
trivially has a 3-orientation, it is sufficient to observe that edge-contractions preserve
the existence of 3-orientations.

Since e′ = 3n′, we remark that all the outgoing edges exhaust the internal edges.
In particular, all the internal edges incident to the vi’s are ingoing.

Definition of Schnyder Woods A Schnyder wood [Schnyder, 1989] on a plane
simple triangulation M is a 3-orientation of M with a labeling of the edges with 3
distinct labels 0, 1, 2 following the rule depicted on Figure 42. In clockwise order
around a vertex we must see: an outgoing red edge, any number of incoming green
edges (can be 0), an outgoing blue edge, any number of incoming red edges, an
outgoing green edge and any number of incoming blue edges. We also require that
all the edges incident to vi receive color i for i ∈ {0, 1, 2}. The three colors play
symmetric roles in the definition and we consider the Schnyder woods up to cyclic
permutation of the colors. We denote by Ti the set of edges with color i.

1

2

2

2

011

0

0

Figure 42: The local rule of Schnyder woods.

Proposition 2.4.4. Ti contains no oriented cycle.
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Proof. By way of contradiction, assume that Ti contains an oriented cycle C. We
consider the restriction M ′ of M to the interior of C included. Let n1 be the length
of C and let n2 be the number of interior vertices of M ′. Since the coloration
forms a Schnyder wood, each vertex on C has one outgoing edge inside M ′ and
one outside. Hence every vertex in C has outdegree 2 and every interior vertex
has outdegree 3. We deduce that the number of edges of M ′ is e = 2n1 + 3n2.
Let f be the number of triangles of M ′, 3f counts twice the interior edges and
once those of C so that 3f = 2e − n1. We obtain from the Euler relation 1 =
n1 + n2 − 2n1 − 3n2 + 2

3
(2n1 + 3n2)− 1

3
n1 = 0 which is a contradiction.

Corollary 2.4.5. Each Ti is an oriented spanning tree rooted at vi. In particular,
Ti is connected as an undirected graph.

That last corollary motivates the name of Schnyder woods and is illustrated in
Figure 43. In the plane, Schnyder woods are entirely determined by their underlying
3-orientation:

Theorem 2.4.6. [de Fraysseix and Ossona de Mendez, 2001] Each 3-orientation of
a plane simple triangulation admits a unique coloring leading to a Schnyder woods.

Figure 43: The three monochromatic trees.

Applications of Colorings Since orientations and colorings are equivalent, one
may wonder if the colorings are useful. We present a well known application that is
naturally described using the colorings. We first give a property of the colorings.
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Proposition 2.4.7. Let v be an internal vertex. There is a unique monochromatic
oriented path from v to vi for i ∈ {1, 2, 3}. In addition, the three paths do not cross.

We fix an internal vertex v. The three paths of the proposition define three
regions of the triangulation that we denote by Ri (see Figure 44). R0 is the region
bounded by the blue and green paths and the edge between v1 and v2. We associate a
triple (x, y, z) to v where x = |R0| (the cardinality of R0 is the number of faces in the
corresponding region), y = |R1| and z = |R2|. In addition, we set v0 to (f − 1, 0, 0),
v1 to (0, f − 1, 0) and v2 to (0, 0, f − 1) where f is the total number of faces of the
triangulation (the −1 accounts for the outer face).

Figure 44: The three parts Ri.

Theorem 2.4.8. [Schnyder, 1990] With the notation described above, using the triple
as coordinates in R3 lead to a correct embedding of the triangulation in the plane
{(x, y, z) | x + y + z = f − 1}. In addition, the orthogonal projection on the plane
{z = 0} leads to a correct embedding of the triangulation on a (f − 1)× (f − 1) grid.

We can also count the number of Schnyder woods (with a root fixed at v0) of
plane simple triangulations by considering the colors [Bonichon, 2002]. Let us use
the same construction for the dual than the one we used for polygons by considering
the triangle v0v1v2 as a boundary (see Figure 46). Then we cut edges dual to the
red edges of the tree T0. We obtain a tree-cotree decomposition (T0, C0, X = ∅) of
triangulations with one boundary. We associate a particular tree to every (rooted)
Schnyder wood. The number of Schnyder woods over plane simple triangulations
with n + 3 vertices can be obtained by counting the trees that can be obtained by
this association and is Cn+2Cn − C2

n+1 ([Bonichon, 2002, Theorem 3.3.1, p.51]).

Lattice Structure Let M be a plane simple triangulation and let SWM be the
set of all Schnyder woods on M . Consider two distinct elements sw1 and sw2 of
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Figure 45: The grid embedding of our example.

Figure 46: The grid embedding of our example.

SWM . By definition their difference is the set of edges with opposite orientation
in sw1 and sw2. We write sw1 ≤ sw2 when their difference is the boundary of a
unique triangle (not necessarily a face triangle) that is oriented counterclockwise in
sw1 and clockwise in sw2. We consider the partial order on SWM generated by those
relations.

Theorem 2.4.9. [Propp, 1993; Ossona de Mendez, 1994; Felsner, 2004] (SWM ,≤)
has a structure of distributive lattice.

The minimal element of the lattice can be chosen as a canonical representative.
Moreover the canonical element can be computed in linear time by swapping tri-
angles. The minimal element is the unique 3-orientation of M with no clockwise
oriented cycle. This characterization comes from the following lemma.

Lemma 2.4.10. If a 3-orientation of a simple triangulation has a clockwise oriented
cycle then it has a clockwise oriented triangle (not necessarily a face triangle).
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Proof. We fix a Schnyder wood coloring of the 3-orientation (see Theorem 2.4.6). Let
C be a clockwise oriented cycle such that the interior map of C contains no clockwise
oriented cycle different from C. The proof is similar as the one of Proposition 2.4.4.
We use the same notations. We recall that n1 denotes the length of the oriented
cycle C and n2 the number of interior vertices of M ′. The main change is that we
do not know the outdegree of the vertices of C in M ′. Let k be the sum of the
outdegrees of the vertices of C minus n1 (we remove the n1 edges of C). We obtain
1 = n1 + n2− n1− k− 3n2 + 2

3
(n1 + k+ 3n2)− 1

3
n1 = 1

3
n1− 1

3
k by Euler formula. It

implies k = n1− 3. If C is not a triangle then k ≥ 1. There exists an edge e incident
to a vertex v of C and oriented outward v. Let i be the color of e. It is the first
edge of the oriented path linking v to vi. This path contains a subpath P that link
v to another vertex v′ of C (see Figure 47). C can be decomposed into two oriented
paths P1 from v to v′ and P2 from v′ to v. P ·P2 is a clockwise cycle that contradicts
the choice on C. So C is a triangle.

Figure 47: A shortcut.

2.4.3 Generalizations to Higher Genus

Unicellular Maps We saw that the plane maps are in bijection with particular
trees. The trees can be seen as the skeletons of the maps. The question is: can
we define the skeleton of a map of non-null genus? The good generalization of
trees happens to be unicellular maps. A unicellular map is a combinatorial map
with a unique face. Unicellular maps of genus 0 are exactly the combinatorial maps
whose underlying graph is a tree. Unicellular maps are well studied. For a detailed
and purely combinatorial study we advise to look at [Chapuy, 2009]. Let M be a
combinatorial map of genus g. If (T,C,X) is a tree-cotree decomposition of M then
the restriction of M to T ∪ X is a unicellular map. Thus, when looking for the
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skeleton of M we will look at something corresponding to a tree with 2g additional
edges.

Toroidal Schnyder Woods The definition of Schnyder woods for toroidal trian-
gulations is the following. Given a toroidal triangulation M (here a triangulation
is a general triangulation without contractible loops or homotopic double edges), a
(toroidal) Schnyder wood of M is an orientation and coloring of the edges of M
with the colors 0, 1, 2, where each vertex satisfies the Schnyder property (see Fig-
ure 48 for an example). Note that in the torus case we have e = 3n, so we can ask
for the Schnyder property everywhere and we no longer need to specify a triangle as
in the planar case. We consider that a Schnyder wood and its underlying orientation
are the same object since one can easily recover a coloring of the edges in a greedy
way (by choosing the color of an edge arbitrarily and then satisfying the Schnyder
property at every vertex).

Figure 48: A Schnyder wood in a toroidal triangulation (opposite sides are identified
in order to form a torus).

This introduction of non-planar Schnyder woods is due to [Gonçalves and Lévêque,
2013]. Their study is pushed forward in [Gonçalves et al., 2015]. All the results stated
in this section and in the next one comes from those 2 articles. An actualize and very
detailed summary can be found in [Lévêque, 2016]. Note that they provide gener-
alization of Schnyder woods to maps of any genus. However, the situation becomes
quite different for triangulations of genus 2 or more since we have e > 3n.

Properties of Toroidal Schnyder Woods The situation is quite different from
the planar case. In a Schnyder wood of a toroidal triangulation, each vertex has ex-
actly one outgoing arc in each color so that there are monochromatic cycles contrarily
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to the planar case. Moreover the graph Ti induced by the color i is not necessarily
connected. However, Proposition 2.4.4 does not disappear but can be weakened as
follows.

Proposition 2.4.11. Ti contains no oriented null-homologous cycle.

By a recursive argument based on edge contraction we can show that:

Theorem 2.4.12. Every toroidal triangulation admits a 3-orientation.

Figure 49: Two different orientations of a toroidal triangulation. Only the one on
the right corresponds to a Schnyder wood.

In the planar case, any orientation corresponds to a Schnyder wood (Theo-
rem 2.4.6). This is not true for toroidal triangulations since there exists 3-orientations
that do not correspond to a Schnyder wood (see Figure 49). However, it is still true
that every toroidal triangulation admits a Schnyder wood. This again shown by
contracting edges until we reach a one vertex triangulation. It leaves us with the
following question: how to characterize and compute a canonical Schnyder wood?
It is the subject of the next section. Just before we go deeper into this, we quickly
justify the use of homology over homotopy.

Homology vs. Homotopy The two notions are equivalent for simple curves on
the torus. However, it is interesting to try to make an informed choice in order to
facilitate the generalization to higher genus. First, the operation we use to travel in
the lattice of the Schnyder woods of a plane map is swapping triangles. If we want
to find a lattice structure based upon the same kind of operation then it should be
possible to go from any Schnyder wood in the lattice to any other one by applying a
sequence of triangle swaps. It implies that two Schnyder woods in the same lattice
will differ in a set of edges that is a null-homologous cycle (that is not necessarily
a simple cycle). It implies that a splitting cycle in genus at least two should be
considered like contractible ones. It thus justify the use of homology. Let us give a
formal definition of the notion of homology that we will use on 3-orientations. An
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orientation of a graph can naturally be seen as a 1-chain. Let O1 and O2 be two
3-orientations of the same graph. We consider the difference d between O1 and O2

defined as d = 1
2
(O1 − O2). The half factor is correct because the 1-chain O1 − O2

only have coefficients that are 0, 2 or -2. We say that O1 and O2 are homologous if
and only if d is null-homologous cycle (not necessarily simple or connected). Remark
that we use Z-homology here.

2.4.4 Canonical Toroidal Schnyder woods

Crossing Schnyder Woods A Schnyder wood of a toroidal triangulation is said
to be a crossing Schnyder Woods, if for each pair (i, j) of different colors, there
exists a monochromatic cycle of color i intersecting a monochromatic cycle of color
j.

Theorem 2.4.13. Every toroidal triangulation admits a crossing Schnyder wood.

Figure 50 depicts two different Schnyder woods of the same graph where just
the one on the left is crossing. On the right of the figure, the blue cycle crosses
both green and red cycles but none of the red cycles cut the green cycle and we
say that the Schnyder wood is half-crossing. Note that the Schnyder wood on
the right is obtained from the one on the left by flipping a clockwise triangle into a
counterclockwise triangle.

Crossing Half-crossing

Figure 50: A crossing and a half-crossing Schnyder wood.

Consider a toroidal triangulation G given with a crossing Schnyder wood. Let D0

be the corresponding 3-orientation of G and let O(G) be the set of all the orientations
of G that are homologous to D0.

Lemma 2.4.14. The crossing Schnyder woods of G are pairwise homologous.

It implies that O(G) contains all the crossing Schnyder woods of G. Thus the
definition of O(G) does not depend on the particular choice of D0 and thus it is
uniquely defined. Thanks to the next theorem, we call the elements of O(G) the
homologous-to-crossing Schnyder woods, or HTC Schnyder woods for short.
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Theorem 2.4.15. Every orientation of O(G) admits a coloring that respects the
Schnyder property.

Examples Figure 51 gives an example of a HTC Schnyder wood that is not crossing
and a Schnyder woods that is not HTC. The example on the left is obtained from
the crossing Schnyder wood of Figure 50 by flipping two triangles (one to obtain
the half-crossing Schnyder wood of Figure 50 and then another one flipped from
counterclockwise to clockwise). Thus it is HTC since the difference with a crossing
Schnyder wood is a 0-homologous oriented subgraph. The example on the right of
Figure 51 is obtained from the crossing Schnyder wood of Figure 50 by reversing the
three vertical red monochromatic cycles. The union of these three cycles is not a
0-homologous oriented subgraph, thus the resulting orientation is not HTC.

Non-crossing and HTC Not HTC

Figure 51: Non-crossing Schnyder woods.

Properties of Monochromatic Cycles Here we state some properties of monochro-
matic cycles. Since we do not want to consider the orientation of the monochromatic
cycles we use Z/2Z-homology in this paragraph. In particular a cycle C is Z/2Z-
homologous to C ′ if one of the following is true: C and C ′ are Z-homologous or C
and −C ′ are Z-homologous.

Lemma 2.4.16. Monochromatic cycles of the same color are Z/2Z-homologous.

Proof. Let C and C ′ be two monochromatic cycles of the same color. By Propo-
sition 2.4.11, none of C or C ′ is null-homologous. For a contradiction, we assume
that C and C ′ are not homologous. Since they are drawn on the torus they must
intersect. Hence they must have a common edge (there is only one outgoing edge of
the correct color on the intersection vertex). Since every vertex has a unique outgo-
ing edge of each color, C and C ′ must actually be equal. We have thus reached a
contradiction.

Lemma 2.4.17. Let C and C ′ be two monochromatic cycles of different colors that
intersect. Then C and C ′ are not Z/2Z-homologous.
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Proof. By way of contradiction, we assume that C and C ′ are homologous. Let v be a
common vertex of C and C ′. Let ṽ be any lift of v in the universal cover of the torus.
Let C̃ and C̃ ′ be the lifts of C and C ′ starting at ṽ. Since C and C ′ are homologous,
C̃ and C̃ ′ have the same endpoints (note that as we consider homology in Z/2Z, the
orientation of C ′ has to be chosen consistently with the one of C). It implies that
there is a disk in the universal cover whose boundary consists in a simple subpath
of C concatenated with a simple subpath of C ′. As in the proof of Lemma 2.4.10,
the boundary of the disk must have exactly 3 less outedges than its length. Since
monochromatic cycles have an outedge on each of their sides, the vertices of the
boundary of the disk all have an outedge directed inside the disk except maybe for
the two vertices of the concatenation. This leads to a contradiction.

The first remark of the paragraph and the last lemma gives:

Lemma 2.4.18. Let C and C ′ be two monochromatic cycles of different colors of a
crossing Schnyder wood. Then C and C ′ are not Z/2Z-homologous.

HTC Lattice It is proved in [Gonçalves et al., 2015] that on any oriented surface
the set of orientations of a given map having the same homology carries a structure
of distributive lattice. Thus, in particular, the set of HTC Schnyder wood carries a
structure of distributive lattice. We choose an arbitrary face f0 of G. This choice
of a particular face corresponds to the choice of the outer face in the planar case
and defines clockwise and counterclockwise for the oriented null-homologous (sim-
ple) cycle of G. Indeed such a cycle is separating. It thus define two connected
components on the surface, one not containing f0. We say that the cycle is oriented
counterclockwise if this connected component is on the left of the cycle. We define
the order we want for the lattice as follows. Let O1 and O2 be two 3-orientations of
G. Let d = 1

2
(O1 −O2) be their difference. Then we say that O1 ≤f0 O2 if and only

if there exists a set of faces oriented counterclockwise (different from f0) such that
d =

∑
F∈F ∂(F ). In the same idea, that a directed subgraph is oriented clockwise if

the corresponding 1-chain can be written as a sum of faces oriented clockwise.

Theorem 2.4.19. (O(G),≤f0) is a distributive lattice.

Structure of Lattices of 3-Orientations [Gonçalves et al., 2015] provides differ-
ent formulations and many proofs for the same theorems. One of their formulations
is especially relevant for us. It relies on a certain function γ defined as follows. Con-
sider a particular orientation of G. Let C be a cycle that is given with an arbitrary
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direction (not necessarily induced by the orientation of G). Then γ(C) is defined by:

γ(C) = |{edges leaving C on its right}| − |{edges leaving C on its left}|

Leaving here means that the edges are outgoing when seen from their vertex in
C. We can now give an alternative characterization of O(G) using the function γ.
We remark that by the Schnyder property, it is clear that in a toroidal Schnyder
woods, a monochromatic cycle C always satisfies γ(C) = 0 (each vertex of C has
one outgoing edge on each side). Suppose that the orientation of G corresponds to
a crossing Schnyder wood and let C1, C2 be two monochromatic cycles of different
colors. By the preceding remark we have γ(C1) = γ(C2) = 0. By Lemma 2.4.18, the
two cycles C1, C2 are non-homologous. Since they are also non-null-homologous they
form a basis for the homology. When swapping a null-homologous oriented subgraph,
the value of γ on a given cycle does not change. Thus any HTC Schnyder wood also
satisfies γ(C1) = γ(C2) = 0. We can show that:

Proposition 2.4.20. If a 3-orientation of a toroidal triangulation satisfies γ equals
0 for two cycles forming a basis for the homology, then γ equals 0 for any non-null-
homologous cycle.

It implies that any HTC Schnyder woods satisfies γ equals 0 for any non-null-
homologous cycle. We call this property the γ0 property. In general, it is proved
that γ can be used to characterize a partition of the 3-orientations of a given triangu-
lation into sets that carry a structure of lattice for our order relation. This theorem
is far from trivial, see [Lévêque, 2016] for a detailed proof. Note that computing γ is
the easiest way to check that our examples of 3-orientation actually have the claimed
properties.

Theorem 2.4.21. Let G be a triangulation and C1 and C2 two simple cycles in
G that form a basis of the homology of G. The couple Cγ = (γ(C1), γ(C2)) of a
3-orientation O characterizes its lattice as follows:

• If Cγ = (0, 0), then O is a HTC Schnyder woods.

• If Cγ = (a, b) with a and b being multiples of 3 and a or b different from 0, then
O is non-HTC Schnyder woods.

• If Cγ = (a, b) and 3 does not divide a or b, then O does not correspond to a
Schnyder woods.
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Canonical Schnyder Woods Since (O(G),≤f0) is a distributive lattice, it has
a unique minimal element. This minimal element will be our canonical Schnyder
woods. The following lemma gives a characterization of our canonical structure.
The proof is similar to the one of Lemma 2.4.10.

Lemma 2.4.22. The minimal element of (O(G),≤f0) is the only HTC Schnyder
wood that contains no clockwise (non-empty) 0-homologous oriented subgraph with
respect to f0.

The crossing Schnyder wood of Figure 52 is the minimal HTC Schnyder wood for
the choice of f0 corresponding to the shaded face.

Figure 52: The minimal HTC Schnyder wood of K7 with respect to the shaded face.

The two HTC Schnyder woods of Figure 50 are not minimal (for any choice of
special face f0) since they contain several triangles that are oriented clockwise. On
the contrary, the HTC Schnyder wood of Figure 51 is minimal with respect to its
only face oriented clockwise. These examples shows that the minimal HTC Schnyder
wood is not always crossing.

An Important Lemma We define the dual orientation D∗ of an orientation D
of G as an orientation of the edges of the dual map G∗ of G satisfying the following
rule: the dual e∗ of an edge e goes from the face on the left of e to the face on the
right of e. The following lemma gives the key property of HTC Schnyder woods that
we need in Chapter 5:



76 CHAPTER 2. PRELIMINARIES

Lemma 2.4.23. If D is an orientation corresponding to a HTC Schnyder wood,
then the dual orientation D∗ contains no oriented non-null-homologous cycle.

Proof. We first prove the property for a crossing Schnyder wood and then show that
it is stable by reversing a 0-homologous oriented subgraph. Thus it is true for all
HTC Schnyder woods.

Consider a crossing Schnyder wood of G whose existence is ensured by Theo-
rem 2.4.13. Let D0 be the corresponding orientation. For i ∈ {0, 1, 2}, let Ci be a
monochromatic cycle of color i, it is not null-homologous by Proposition 2.4.11. By
Lemma 2.4.18, the cycles Ci are pairwise non-homologous. Thus for i ∈ {0, 1, 2},
the two cycles Ci−1 and Ci+1 form a basis Bi for the Q-homology. It means that the
matrix of a Bi in a Z-basis has non-null determinant but it can be anything in Z.
In practice it is the algebraic number of intersections between the two cycle of Bi.
By the Schnyder property, cycle Ci−1 is crossing Ci (maybe several time) from left
to right. Thus the homology of any closed curve can be expressed in at least one of
the basis Bi with only non-negative coefficients (in any case the third cycle that is
not in Bi has two negative coefficients, then some basic algebra gives the result).

Suppose now by contradiction that D∗0 contains an oriented non-null-homologous
cycle C∗. If this cycle is homologous to some Ci then it crosses then Ci crosses C∗

at least one time from left to right, a contradiction. Let i in {0, 1, 2}, such that C∗

is homologous to λi−1Ci−1 + λi+1Ci+1 with λi−1 and λi+1 in Q with λi−1 > 0 and
λi+1 > 0. Then Ci+1 is crossing C∗ at least once from left to right, contradicting
the fact that C∗ is an oriented cycle of D∗0. So D∗0 contains no oriented non-null-
homologous cycle.

Consider now a HTC Schnyder wood of G and let D be the corresponding ori-
entation. Since D and D0 are both element of O(G) they are homologous to each
other. Let T be the 0-homologous oriented subgraph of D such that T = D \ D0.
Thus D0 is obtained from D by reversing the edges of T .

Suppose by contradiction that D∗ contains an oriented non-null-homologous cycle
C∗. The oriented subgraph T is 0-homologous thus it intersects C∗ exactly the same
number of time from right to left than from left to right. Since C∗ is oriented T cannot
intersect it from left to right. So T does not intersect C∗ at all. Thus reversing T
to go from D to D0 does not affect C∗. Thus C∗ is an oriented non-null-homologous
cycle of D∗0, a contradiction.

For the non-HTC Schnyder woods of Figure 51, one can see that there is a
horizontal oriented non-null-homologous cycle in the dual, so it does not satisfy the
conclusion of Lemma 2.4.23. Note that this property is not a characterization of being
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HTC. Figure 53 is a Schnyder wood that is not HTC but satisfies the conclusion of
Lemma 2.4.23.

Figure 53: A Schnyder wood that is not HTC but contains no oriented non-null-
homologous cycle in the dual.
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Chapter 3

Computing the Geometric
Intersection Number of Curves

3.1 Introduction

Let S be a surface and let α, β : R/Z→ S be two freely homotopic curves. Assuming
the curves in generic position, their number of intersections is

|α ∩ β| = |{(t, t′) | t, t′ ∈ R/Z and α(t) = β(t′)}|.

Their geometric intersection number only depends on their free homotopy classes
and is defined as

i(α, β) = min
α′∼α,β′∼β

|α′ ∩ β′|

Likewise, the number of self-intersections of α is given by

1

2
|{(t, t′) | t 6= t′ ∈ R/Z and α(t) = α(t′)}|,

and its minimum over all the curves freely homotopic to α is its geometric self-
intersection number i(α). Note the one half factor that comes from the identifi-
cation of (t, t′) with (t′, t).

The geometric intersection number is an important parameter that allows to
stratify the set of homotopy classes of curves on a surface. The surface is usually
endowed with a hyperbolic metric, implying that each homotopy class is identi-
fied by its unique geodesic representative. Extending a former result by Mirza-
khani [Mirzakhani, 2008], Sapir [Sapir, 2016; Mirzakhani, 2016] has recently pro-
vided tight asymptotics for the number of closed geodesics with bounded length

79
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and bounded geometric intersection number. Chas and Lalley [Chas and Lalley,
2012] also proved that the distribution of the geometric intersection number with
respect to the length of geodesics approaches the Gaussian distribution as the length
grows to infinity. Other more experimental results were obtained with the help of
a computer to show the existence of length-equivalent homotopy classes with dis-
tinct geometric intersection numbers [Chas, 2014]. Hence, for both theoretical and
practical reasons various aspects of the computation of geometric intersection num-
bers have been studied in the past including the algorithmic ones. Nonetheless, all
the previous approaches rely on rather complex mathematical arguments and to our
knowledge no exact complexity analysis has yet appeared. In this chapter, we make
our own the words of Dehn who noted that the metric on words (on some basis of
the fundamental group of the surface) can advantageously replace the hyperbolic
metric [de La Harpe, 2010]. We propose a combinatorial framework that leads to
simple algorithms of low complexity to compute the geometric intersection number
of curves or to test if this number is zero. Our approach is based on the computa-
tion of canonical forms as recently introduced in the purpose of testing whether two
curves are homotopic [Lazarus and Rivaud, 2012; Erickson and Whittelsey, 2013].
Canonical forms are instances of combinatorial geodesics who share nice properties
with the geodesics of a hyperbolic surface. On such surfaces each homotopy class
contains a unique geodesic that moreover minimizes the number of self-intersections.
Although a combinatorial geodesic is generally not unique in its homotopy class, it
must stay at distance one from its canonical representative and a careful analysis of
its structure leads to the first result of the chapter.

Theorem 3.1.1. Given two curves represented by closed walks of length at most ` on
a combinatorial surface of complexity n we can compute the geometric intersection
number of each curve or of the two curves in O(n+ `2) time.

As usual the complexity of a combinatorial surface stands for its total number of
vertices, edges and faces. A key point in our algorithm is the ability to compute the
primitive root of a canonical curve in linear time. We next provide an algorithm to
compute an actual curve immersion that minimizes the number of self-interactions
in its homotopy class.

Theorem 3.1.2. Let c be a closed walk of length ` in canonical form. We can
compute a combinatorial immersion with i(c) crossings in O(`4) time.

We also propose a nearly optimal algorithm that answers an old problem studied
by Poincaré [Poincaré, 1904, §4]: decide if the geometric intersection number of a
curve is null, that is if the curve is homotopic to a simple curve.
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Theorem 3.1.3. Given a curve represented by a closed walk of length ` on a combi-
natorial surface of complexity n we can decide if the curve is homotopic to a simple
curve in O(n+ ` log2 `) time. In the affirmative we can construct an embedding of c
in the same amount of time.

In the next section we review some of the previous relevant works. We introduce
our combinatorial framework in Section 3.3 and discuss the structure of combinatorial
geodesics in Section 3.4. Section 4.3 presents our general simple strategy to compute
the geometric intersection number. The proof of Theorem 3.1.1 is given in the
next three Sections where the case of non-primitive curves is also treated. The
computation of a minimally crossing immersion is presented in Section 3.9 and 3.10
with the proof of Theorem 3.1.2. We finally propose a simple algorithm to detect
and embed curves homotopic to simple curves (Theorem 3.1.3) in Section 3.11.

3.2 Historical Notes

In the fifth supplement to its Analysis situs Poincaré [Poincaré, 1904, §4] describes
a method to decide whether a given closed curve γ on a surface is homotopic to a
simple curve. For this, he considers the surface as the quotient D/Γ of the Poincaré
disk D by a particular group Γ of hyperbolic translations. The endpoints of a lift
of γ in the Poincaré disk are related by a hyperbolic translation whose axis is a
hyperbolic line L representing the unique geodesic homotopic to γ (see Figure 54).
He concludes that γ is homotopic to a simple curve if and only if all the transforms
of L by Γ are pairwise disjoint or equal (in the example of the figure two distinct
lines have a crossing so that γ is not homotopic to a simple curve). This method
was turned into an algorithm by Reinhart [Reinhart, 1962] who worked out the ex-
plicit computations in the Poincaré disk using the usual representation of hyperbolic
translations by two-by-two matrices. The entries of the matrices being algebraic the
computation could indeed be performed accurately on a computer. The ability to
recognize curves that are primitive curves, i.e. whose homotopy class cannot be
expressed as a proper power of another class, happens to be crucial in this algorithm
though computationally expensive.

Birman ans Series [Birman and Series, 1984] subsequently proposed an algorithm
for the case of surfaces with nonempty boundary that avoids manipulating algebraic
numbers. While their arguments applies to a hyperbolic structure, their algorithm
is purely combinatorial. Intuitively, a surface with boundary deform retracts onto a
fat graph (in fact a fat bouquet of circles) whose universal covering space embeds as
a fat tree in the Poincaré disk. The successive lifts of a curve γ trace a bi-infinite
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Figure 54: On the left γ, on the middle the corresponding line L and on the right
some translations of L.

path in this tree. The limit points of this path belongs to the circle ∂D at infinity
and coincide with the ideal endpoints of the axis of the hyperbolic transformation
corresponding to any of the lifts of the curve in the path. The question as to whether
two lifts give rise to intersecting axes can thus be reduced to test if the corresponding
bi-infinite paths have separating limit points on ∂D. As for Reinhart, Birman and
Series assume that the homotopy class of γ is given by a word W on some given set
of generators of the fundamental group of the surface. In turn, the above test on
bi-infinite paths boils down to considering the cyclic permutations of W and W−1 in
a cyclic lexicographic order and to check if this ordering is well-parenthesized with
respect to some pairing of the words.

Cohen and Lustig [Cohen and Lustig, 1987] further observed that the approach
of Birman and Series could be extended to count the geometric intersection number
of one or two curves. In a second paper Lustig [Lustig, 1987] tackles the case where
the curves are taken on a surface without boundary. He considers a closed surface
with negative Euler characteristic as the quotient of the Poincaré disk by a group of
transformations isomorphic to the fundamental group of the surface. The main con-
tribution of the paper is to define a canonical representative for every free homotopy
class α given as a word in some fixed system of loops generating the fundamental
group. Lustig first notes that there is no known way of choosing a unique word for
α. In particular, the shortest words are far from unique. He rather represents (a
lift of) α by a path in the union G ∪ N ∪ H of three tessellations of D, where the
edges of G are all the lifts of the generating loops, N is the dual tessellation, and the
edges of H joins the vertices of G with the vertices of N . (Although the graphs of G,
N and H are embedded their union is not as every edge of G crosses its dual edge
in N .) Lustig gives a purely combinatorial characterization of canonical paths and
argues that the method in his first paper [Cohen and Lustig, 1987] can be applied
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to the canonical representative of α. Overall the two papers adds up to 60 pages
with essential arguments from hyperbolic geometry and the complexity of the whole
procedure remains to be determined.

Other approaches were developed without assuming any hyperbolic structure.
Based on the notion of winding number, Chillingsworth [Chillingworth, 1969; Chill-
ingworth, 1972] provides an algorithm to test whether a curve is homotopic (this time
with fixed basepoint) to a simple curve on a surface with nonempty boundary. He also
proposed an algorithm for determining when a given set of simple closed curves
can be made disjoint by (free) homotopy [Chillingworth, 1971]. While the winding
number relies on a differentiable structure, Zieschang [Zieschang, 1965; Zieschang,
1969] used the connection between the automorphisms of a topological surface and
the automorphisms of its fundamental group in order to detect the homotopy classes
of simple closed curves.

A related work by Hass and Scott [Hass and Scott, 1985] is concerned with curves
which have excess intersection, i.e. that can be homotoped so as to reduce their
number of intersections. Hass and Scott introduce various types of monogons and
bigons that can be either embedded, singular or weak. A singular monogon of
a curve γ : R/Z → S is a contractible subpath of γ whose endpoints define a self-
intersection of γ. A bigon of γ is defined by two self-intersections joined by two
homotopic subpaths (with fixed endpoints) γ|σ and γ|σ′ with σ, σ′ ⊂ R/Z. The
bigon is a singular bigon if the defining segments σ, σ′ are disjoint and a weak
bigon otherwise. Hass and Scott prove that a curve with excess self-intersection on
an orientable surface must have a singular monogon or a singular bigon (see Figure 55
for the classification of bigons).

Figure 55: The bigons: an innermost, an embedded, a singular and a non-singular.

Their result directly suggests an algorithm to compute the geometric intersection
number of a curve: iteratively remove monogons or untie bigons until there is no
more. The final configuration must have the minimal number of self-intersections.
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Designing an efficient procedure to find monogons and bigons remains the crux of
this approach. In any case, the method cannot be extended to compute the geometric
intersection number of two curves since Hass and Scott give two counter-examples to
the fact that two curves with excess intersections should have a singular monogon or
bigon. One of their counter-examples contains a curve with excess self-intersections
and the other one contains a non-primitive curve. Our counter-example, Figure 56,
shows that even assuming each curve to be primitive and in minimal configuration,
we may have excess intersections without singular bigons.

δ
γ

A B

γ′

δ′

Figure 56: The plain circles represent non-contractible curves. The two curves γ
and δ on the left have homotopic disjoint curves γ′ and δ′. They thus have excess
intersection although there is no singular bigon between the two. If A = γ(0) = δ(0)
and B = γ(u) = δ(v) we nonetheless have δ|[0,v] ∼ γ|[0,1+u] where γ|[0,1+u] is the
concatenation of γ with γ|[0,u]. In particular, γ|[0,1+u] wraps more that once around
γ.

Nonetheless, it was proved by [Hass and Scott, 1994; de Graaf and Schrijver,
1997; Paterson, 2002] that starting from any configuration of curves one may reach
a configuration with a minimal number of intersections by applying a finite sequence
of elementary moves involving innermost monogons, bigons and trigons similar to
the Reidemeister moves in knot theory. A surprising consequence was obtained by
Neumann-Coto [Neumann-Coto, 2001]. Define a cut and paste on a family of curves
by cutting the curves at some of their intersection points and glueing the resulting
arcs in a different order. Neumann-Coto proves that any set of primitive curves can
be brought to a homotopic set with minimal (self-)intersections by a set of cut and
paste operations. Note that each intersection of two curve pieces can be re-arranged
in three different manners, including the original one, by a cut and paste. Hence, if
the curves have I (self-)intersections we may find a minimal configuration out of the
3I possible re-configurations!

We also mention the algebraic approach of Gonçalves et al. [Gonçalves et al., 2005]
based on previous works by Turaev [Turaev, 1979] who introduced intersection forms
over the integral group ring of the fundamental group of the surface. See [Cohen and
Lustig, 1987; Gonçalves et al., 2005] for more historical notes.
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The last point we have to discuss is the complexity of the algorithm that we can
design using those works. No explicit complexity analysis has been done but some
are quite easy to evaluate. The next table summaries it, where b is the number of
boundaries of the underlying surface. In our model, the entry is a map of size n
and a closed walk in that map of size l. Since the considered algorithms mainly
take as input a word in a representation of the π1 it requires O(n) time to obtain
the word from the walk and the result can have a size of 2gl. For the case with
boundaries Birman and Series, Cohen and Lustig and [Arettines, 2015] give the best
complexities. In the case with empty boundaries, the algebraic method can lead to,
in the most optimistic scenario, a O(l`) time complexity. It is interesting to note that
no algorithm from the bibliography gives a polynomial time for the computation of
a representative in that case.

Before Simple Number Representative
b > 0 O(n+ (g`)2) O(n+ (g`)2) O(n+ (g`)4)
b = 0 O(n+ (g`)5) O(n+ (g`)5) exponential

3.3 Notations

For simplicity, we shall only consider orientable surfaces in this chapter.

Combinatorial curves Let c be an edge-path. If c is closed, we write c(i), i ∈
Z/|c|Z, for the vertex of index i of c and c[i, i+ 1] for the arc joining c(i) to c(i+ 1).
For convenience we set c[i + 1, i] = c[i, i + 1]−1 to allow the traversal of c in reverse
direction. In order to differentiate the arcs with their occurrences we denote by
[i, i ± 1]c the corresponding occurrence of the arc c[i, i ± 1] in c±1, where c−1 is
obtained by traversing c1 := c in the opposite direction. More generally, for any
non-negative integer ` and any sign ε ∈ {−1, 1}, The sequence of indices

(i, i+ ε, i+ 2ε, . . . , i+ ε`)

is called an index path of c of length `. The index path can be forward (ε = 1)
or backward (ε = −1) and can be longer than c so that an index may appear more

than once in the sequence. We denote this path by [i
ε`→]c. Its image path is given

by the arc sequence

c[i
ε`→] := (c[i, i+ ε], c[i+ ε, i+ 2ε], . . . , c[ε(`− 1), ε`]).

The image path of a length zero index path is just a vertex.
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Combinatorial crossings Given an immersion I of two combinatorial closed
curves c and d we define a double point of (c, d) as a pair of indices (i, j) ∈
Z/|c|Z × Z/|d|Z such that c(i) = d(j). Likewise, a double point of c is a pair
(i, j) ∈ Z/|c|Z×Z/|c|Z with i 6= j and c(i) = d(j) The double point (i, j) is a cross-
ing in I if the pairs of arc occurrences ([i−1, i]c, [i, i+ 1]c) and ([j−1, j]d, [j, j+ 1]d)
are linked in the �c(i)-order, i.e. if they appear in the cyclic order

· · · [i, i− 1]c · · · [j, j − 1]d · · · [i, i+ 1]c · · · [j, j + 1]d · · · ,

with respect to �c(i) or the opposite order. An analogous definition holds for a self-
crossing of a single curve, taking c = d in the above definition. Note that the notion
of (self-)crossing is independent of the traversal directions of c and d. The number of
crossings of c and d and of self-crossings of c in I is denoted respectively by iI(c, d)
and iI(c).

We define the combinatorial self-crossing number of c, denoted by i(c), as
the minimum of iI(c

′) over all the combinatorial immersions I of any combinato-
rial curve c′ freely homotopic to c. The combinatorial crossing number of two
combinatorial curves c and d is defined the same way taking into account crossings
between c and d only.

Lemma 3.3.1. The combinatorial (self-)crossing number coincides with the geomet-
ric (self-)intersection number, i.e. for every combinatorial closed curves c and d:

i(c) = i(ρ(c)) and i(c, d) = i(ρ(c), ρ(d)).

Proof. Every combinatorial immersion I of c can be realized by a continuous curve
γ ∼ ρ(c) with the same number of self-intersections as the number of self-crossings
of I. To construct γ we consider small disjoint disks centered at the images of the
vertices of G in S. We connect those vertex disks by disjoint strips corresponding
to the edges of G. For every arc a of G we draw inside the corresponding edge
strip parallel curve pieces labelled by the occurrences of a or a−1 in c in the left-to-
right order �a. The endpoints of those curve pieces appear on the boundary of the
vertex disks in the circular vertex orders induced by I. It remains to connect those
endpoints by straight line segments inside each disk (via a parametrization over a
Euclidean disk) according to the labels of their incident curve pieces. The resulting
curve γ can be homotoped to ρ(c) and its self-intersections may only appear inside
the vertex disks. Clearly, an intersection of two segments of γ in a disk corresponds
to linked pairs of arc occurrences, i.e. to a combinatorial crossing, and vice-versa.
It follows that i(c) ≥ i(ρ(c)). To prove the reverse inequality we show that for
any continuous curve γ in generic position there exists a combinatorial immersion
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of a curve c′ such that ρ(c′) ∼ γ and the number of self-crossings c′ is at most the
number of self-intersections of γ. By an isotopy we can enforce the self-intersections
of γ to lie inside the vertex disks. After removing the vertex disks from S, we are
left with a set of disjoint and simple pieces of γ that can be isotoped inside the
edge strips and vertex disks without introducing any new intersections. If a piece
of curve in a strip has its endpoints on the same end of the strip we can further
isotope the piece inside the incident vertex disk. This way all the curve pieces join
the two ends of their strip and can be ordered from left-to-right inside each strip
(assuming a preferred direction of the strip). Replacing each curve piece by an arc
occurrence we thus define a combinatorial immersion of a curve c′ with the required
properties. The same constructions apply to an immersion of two curves showing
that i(c, d) = i(ρ(c), ρ(d)).

3.4 Geodesics

The canonical form of a curve c is the rightmost combinatorial geodesic homotopic
to it (see Section 2.3.3). The definitions of a geodesic and of a canonical form extend
trivially to paths. In particular, the canonical form of a path is its unique rightmost
homotopic geodesic and is characterized as for closed curves.

Theorem 3.4.1. The canonical form of a combinatorial path is the unique homotopic
path that contains no spurs or brackets and whose turning sequence contains no −1’s.

Although we cannot claim in general the uniqueness of geodesics in a homotopy
class, homotopic geodesics are almost equal and have the same length. Specifically,
define a (quad) staircase as a planar sequence of quads obtained by stitching an
alternating sequence of rows and columns of quads to form a staircase. Assuming
that the staircase goes up from left to right, we define the initial tip of a quad
staircase as the lower left vertex of the first quad in the sequence. The final tip is
defined as the upper right vertex of the last quad. A closed staircase is obtained
by identifying the two vertical arcs incident to the initial and final tips of a staircase.

Theorem 3.4.2. Let c, d be two non-trivial homotopic combinatorial geodesics. If
c, d are closed curves, then they label the two boundary cycles of an annular diagram
composed of a unique closed staircase or of an alternating sequence of paths (possibly
reduced to a vertex) and quad staircases connected through their tips. Likewise, if c, d
are paths, then the closed curve c ·d−1 labels the boundary of a disk diagram composed
of an alternating sequence of paths (possibly reduced to a vertex) and quad staircases
connected through their tips.
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c

d

Figure 57: A disk diagram for two homotopic paths c and d composed of paths and
staircases.

Proof. We only detail the proof when c, d are paths. See Figure 57. The similar case
of closed curves is covered in [Erickson and Whittelsey, 2013]. By Proposition 2.3.2,
c · d−1 is the label of the facial walk of the perforated face of a disk diagram ∆. This
diagram has a cactus-like structure composed of 2-cells subdivided into quads and
connected by trees. A vertex v such that ∆\v is not connected is called a cut vertex.
We also consider as cut vertices the endpoints of c in ∆. A 2-cell of ∆ must have more
than one cut vertex on its boundary. Otherwise, this boundary is entirely labelled by
a subpath of either c or d and Theorem 2.3.6 implies the existence of four brackets,
one of which (in fact two) must avoid the cut vertex, hence be contained in the
interior of this subpath. This would contradict that c and d are geodesic. Moreover,
because c and d have no spur, ∆ cannot have more than two degree one vertices. It
follows that ∆ is an alternating sequence of paths and 2-cells. In particular, each
2-cell has exactly two cut vertices. No 2-cell in this sequence has an interior vertex.
For otherwise, by the second part of Theorem 2.3.7, the boundary of this 2-cell would
contain five brackets one of which would be contained in the interior of either c or d
and this would again contradict that c and d are geodesic. It follows that the dual
of a 2-cell, viewed as an assembling of quads, is a tree. We finally remark that this
tree must be a path with a staircase shape. Indeed, any other shape would imply
the existence of a bracket in either c or d.

Corollary 3.4.3. With the hypothesis of Theorem 3.4.2, c and d have equal length
which is minimal among homotopic curves.

Corollary 3.4.4. A combinatorial geodesic has no non-trivial index path whose im-
age path is contractible.

The next two remarks follow directly from the characterization of geodesics and
canonical forms in terms of spurs, brackets and turns.

Remark 3.4.5. The image path of any index path of a combinatorial geodesic is
geodesic. If the combinatorial geodesic is in canonical form, so is the image path.
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Remark 3.4.6. Likewise, any power ck of a combinatorial closed geodesic c is also
a combinatorial geodesic. Moreover, if c is in canonical form, so is ck.

Let cR and c−1
L be canonical paths such that cR ∼ cL. In other words, cL is the

leftmost geodesic homotopic to cR. By Theorem 3.4.2, there is a disk diagram ∆
composed of quad staircases and paths and whose left and right boundaries ∆L and
∆R are labelled by cL and cR respectively. The next technical Lemma will be used
in Proposition 3.7.1 to analyze the intersection of canonical curves. A spoke is a
non-boundary edge of ∆.

Lemma 3.4.7. Let v, w be two vertices, one on each side of ∆. Then ∆ contains
a path p from v to w labelled by a canonical path. Moreover, p can be uniquely
decomposed as either λ.ρ, ρ.λ, λ.e.ρ or ρ.e.λ, where

1. λ is a subpath (possibly reduced to a vertex) of ∆L or ∆−1
L ,

2. ρ is a subpath (possibly reduced to a vertex) of ∆R or ∆−1
R ,

3. e is a spoke,

4. if λ is a subpath of ∆−1
L of positive length then p ∩∆−1

L = λ,

5. if ρ is a subpath of ∆R of positive length then p ∩∆R = ρ.

6. if ρ is a subpath of ∆−1
R and λ is a subpath of ∆L then either ρ is reduced to a

vertex and p ∩∆R = ρ or λ is reduced to a vertex and p ∩∆−1
L = λ.

Proof. We assume that v is on the left side and w on the right side of ∆, the other
case being symmetric. Let i, j be such that v = ∆L(i) and w = ∆R(j). We first
consider the case where j ≥ i. If ∆L and ∆R coincide at v, then we trivially obtain

the desired decomposition as p = ∆L[i
0→].∆R[i

j−i→]. Otherwise, v may be incident
to 0, 1 or 2 spokes.

• If v is not incident to a spoke then ∆L(i − 1) is either the initial tip of a

staircase or is incident to a spoke e. We set q = ∆L[i
−1→].∆R[i− 1

j−i+1→ ] in

the first case and q = ∆L[i
−1→].e.∆R[i− 1

j−i+1→ ] otherwise. The path q has no
spurs or −1 turns but may start with a bracket. If not, by the characterization
of Theorem 3.4.1, q is already canonical and we can set p = q. Otherwise, we
short cut the bracket in q to obtain a canonical path p satisfying the above
points 1 to 5. See Figure 58.
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Figure 58: The canonical path p from v to w when v is not incident to a spoke.
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Figure 59: The canonical path p from v to w when v is incident to exactly one spoke.

• If v is incident to exactly one spoke e, then e connects v to either ∆R(i − 1)

or ∆R(i + 1). In the former case we set q = e.∆R[i− 1
j−i+1→ ]. As above, q

may be canonical or starts with a bracket and we easily obtain the path p with
the desired properties. See Figure 59. If e is incident to ∆R(i + 1) and j > i

the path p = ∆L[i
0→].e.∆R[i+ 1

j−i−1→ ] has the required properties. When e is
incident to ∆R(i+ 1) and j = i, then either ∆L(i− 1) is incident to a spoke e′

and we must have p = ∆L[i
−1→].e′.∆R[i

0→], or ∆L(i− 1) must be the initial tip

of a staircase and we must have p = ∆L[i
−1→].∆R[i− 1

1→].

• If v is incident to two spokes, then one of them, e−, connects v to ∆R(i−1) and

the other e+ connects v to ∆R(i+ 1). We can directly set p = e−.∆R[i− 1
1→]

if j = i and p = e+.∆R[i+ 1
j−i−1→ ] if j > i.

For Point 6 in the Lemma, we note that we cannot have p = λ.ρ or p = λ.e.ρ with
both λ and ρ being subpaths of positive length of ∆L and ∆−1

R respectively. Indeed,
p would have a spur or a 1̄ turn in the first case and a bracket in the other case.
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Moreover, if ρ is reduced to a vertex and λ is a subpath of ∆L, we may assume that
the intersection p ∩∆R is reduced to ρ. Otherwise, the canonical path between any
other intersection point and ρ would have to follow ∆R and we could express p so
that ρ is a subpath of positive length of ∆R. An analogous argument holds to show
that we can assume p ∩∆−1

L = λ if λ is reduced to a vertex.
We next consider the case i > j. When ∆L and ∆R coincide at w, we obtain

the desired decomposition as p = ∆L[i
j−i→].∆R[i

0→]. Otherwise, w may be incident
to 0, 1 or 2 spokes. Similar arguments as in the case j ≥ i allow to conclude the
proof.

3.5 Our Strategy for Counting Intersections

Following Poincaré’s original approach we represent the surface S as the hyperbolic
quotient surface D/Γ where Γ is a discrete group of hyperbolic motions of the Poincaré
disk D. We denote by p : D → D/Γ = S the universal covering map. Any closed
curve α : R/Z → S gives rise to its infinite power α∞ : R → R/Z → S that wraps
around α infinitely many times. A lift of α is any curve α̃ : R → D such that
p ◦ α̃ = α∞ where the parameter of α̃ is defined up to an integer translation (we
thus identify the curves t 7→ α̃(t + k), k ∈ Z). Note that p−1(α) is the union of all
the images Γ · α̃ of α̃ by the motions in Γ. The curve α̃ has two limit points on the
boundary of D which can be joined by a unique hyperbolic line L. The projection
p(L) wraps infinitely many times around the unique geodesic homotopic to α. In
particular, the limit points of α̃ are independent of the chosen representative in the
homotopy class of α.

No two motions of Γ have a limit point in common unless they are powers of
the same motion. This can be used to show that when α is primitive, its lifts are
uniquely identified by their limit points [Farb and Margalit, 2011]. Let α and β be
two primitive curves. We fix a lift α̃ of α and denote by τ ∈ Γ the hyperbolic motion
sending α̃(0) to α̃(1). Let Γ · β̃ be the set of lifts of β. We consider the subset of lifts

B = {β̃′ ∈ Γ · β̃ | the limit points of β̃′ and α̃ alternate along ∂D}.

Lemma 3.5.1 ([Reinhart, 1962]).

i(α, β) = |B/τ |,

where B/τ is the set of equivalence classes of lifts generated by the relations β̃′ ∼
τ(β̃′).
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Proof. Put I(α, β) = {(t, t′) | t, t′ ∈ R/Z and α(t) = β(t′)}. define a map ϕ :
I(α, β) → B/τ as follows. Given (u mod 1, v mod 1) ∈ I(α, β) there is, by the
unique lifting property of coverings, a unique lift β̃′ of β that satisfies β̃′(v) = α̃(u).
We set ϕ(u mod 1, v mod 1) to the class of this lift. Note that changing u to u + k,
k ∈ Z, leads to the lift τ k(β̃′), so that ϕ is well-defined. The map ϕ is onto. Indeed,
if β̃′ ∈ B then β̃′ and α̃ must intersect at some point β̃′(v) = α̃(u). It follows that
ϕ(u mod 1, v mod 1) is the class of β̃′. As an immediate consequence,

|I(α, β)| ≥ |B/τ |

When α and β are geodesics all their lifts are hyperbolic lines and ϕ is a bijection.
We conclude that |I(α, β)| is minimized among all homotopic curves so that i(α, β) =
|B/τ |.

When α and β are hyperbolic geodesics, their lifts being hyperbolic lines have
alternating limit points exactly when they have a non-empty intersection and they
have a unique intersection point in that case. This point projects to a crossing of
α and β that actually identifies the corresponding element of B/τ . When α and β
are not geodesic the situation is more ambiguous and their lifts may have multiple
intersection points. Those intersection points project to crossings of α and β, so that
the elements of B/τ are now identified with subsets of crossing points (with odd
cardinality) rather than single crossing points. The induced partition is generated
by the following relation: two crossings are equivalent if they are connected by a pair
of homotopic subpaths of α and β, namely one of the two subpaths of α and one
of the two subpaths of β cut by the two crossings. Indeed, if the two crossings are
projections of intersections of two lifts, then the paths between those intersections in
each lift project to homotopic paths. Conversely, homotopic paths lift to paths with
common endpoints that can be seen as subpaths of two intersecting lifts. In order
to compute the above partition, we thus essentially need an efficient procedure for
testing if two paths are homotopic. This homotopy test can indeed be performed in
linear time according to Theorem 2.3.8. Since a combinatorial curve of length ` may
have O(`2) crossings, we directly obtain an algorithm with time complexity O(`5) to
compute the above partition.

When dealing with combinatorial (canonical) geodesics, the situation is more
constrained and somehow intermediate between the ideal hyperbolic case and the
most general situation. Thanks to Theorem 3.4.2, we know that homotopic paths
must stay parallel and at distance at most one. See Figure 60. This allows us to
identify equivalent crossings more efficiently. These ideas are formalized in the next
sections.
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D
α̃

β̃

Figure 60: Left, two intersecting hyperbolic lines. Middle, two lifts of non-geodesic
curves may intersect several times. Right, lifts of combinatorial geodesics.

3.6 Crossing Double-Paths

Let c, d be two combinatorial closed curves on a combinatorial surface. A double-

path of (c, d) of length ` is a pair of forward index paths ([i
`→]c, [j

`→]d) with the

same image path c[i
`→] = d[j

`→]. If ` = 0 then the double path is just a double
point. A double path of c is defined similarly, taking c = d and assuming i 6= j. The
next Lemma follows from Remark 3.4.5.

Lemma 3.6.1. Let [i
`→]c and [j

k→]d be forward index paths of two canonical curves

c and d such that the image paths c[i
`→] and [j

k→] are homotopic. Then k = ` and

([i
`→]c, [j

`→]d) is a double path.

A double path ([ı
`→]c, [

`→]d) gives rise to a sequence of ` + 1 double points
(ı+ k, + k) for k ∈ [0, `]. A priori a double point could occur several times in this
sequence. The next two lemmas claim that this is not possible when the curves are
primitive. Recall that a curve is primitive if its homotopy class cannot be expressed
as a proper power of another class.

Lemma 3.6.2. A double path of a primitive combinatorial curve c cannot contain a
double point more than once in its sequence. In particular, a double path of c must
be strictly shorter than c.

Proof. Suppose that a double path P of c contains two occurrences of a double point
(i, j). Because the couples (i, j) and (j, i) represent the same double point there are
two cases to consider.
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• If P contains the couple (i, j) twice then it must contain a subsequence of length

|c| starting with (i, j). We thus have c[ı
|c|→] = c[

|c|→]. This implies that c is
equal to some non-trivial circular permutation of itself. It is a simple exercise
to check that c must then be a proper power of some other curve, contradicting
that c is primitive.

• Otherwise P contains (i, j) and (j, i). Let ` be the distance between these two

occurrences in P. We thus have c[i
`→] = c[j

|c|−`→ ] from which we deduce that
c is a square (and ` = |c|/2), contradicting that c is primitive.

Lemma 3.6.3. Let c and d be two non-homotopic primitive combinatorial curves.
A double path of (c, d) cannot contain a double point more than once in its sequence.
Moreover, the length of a double path of (c, d) must be less than |c|+ |d| − 1.

Proof. Suppose that a double path of (c, d) contains two occurrences of a double
point. After shortening the double path if necessary, we may assume that these two
occurrences are the first and the last double points of the double path. Its length
must accordingly be a nonzero integer multiple p of |c| as well as a nonzero integer
multiple q of |d|. It follows that for some circular permutations c′ of c and d′ of d we
have c′p = d′q. By a classical result of combinatorics on words [Lothaire, 1997, Prop.
1.3.1] this implies that c′ and d′ are powers of a same curve, in contradiction with the
hypotheses in the lemma. In fact, by a refinement due to Fine and Wilf [Lothaire,
1997, Prop. 1.3.5] it suffices that c′p and d′q have a common prefix of length |c|+|d|−1
to conclude that c′ and d′ are powers of a same curve. This proves the second part
of the lemma.

A double path whose index paths cannot be extended is a maximal double
path. As an immediate consequence of Lemmas 3.6.2 and 3.6.3 we have:

Corollary 3.6.4. The maximal double paths of a primitive curve or of two primitive
curves in canonical form induce a partition of the double points of the curves.

Let (i, j) and (i+ `, j + `) be the first and the last double points of a maximal
double path of (c, d), possibly with c = d. When ` ≥ 1 the arcs c[i, i− 1], d[j, j − 1],
c[i, i + 1] must be pairwise distinct because canonical curves have no spurs, and
similarly for the three arcs c[i+ `, i+ `+ 1], d[j + `, j + `+ 1], c[i+ `, i+ `− 1]. We
declare the maximal double path to be a crossing double path if the circular
ordering of the first three arcs at c(i) and the circular ordering of the last three arcs
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at c(i+ `) are either both clockwise or both counterclockwise with respect to the
rotation system of the system of quads. When ` = 0, that is when the maximal
double path is reduced to the double point1 (i, j), we require that the arcs c[i, i −
1], d[j, j − 1], c[i, i+ 1], d[j, j + 1] are pairwise distinct and appear in this circular
order, or its opposite, around the vertex c(i) = d(j).

3.7 Counting Intersections Combinatorially

Let c, d be primitive combinatorial curves such that d is canonical and let cR and
c−1
L be the canonical curves homotopic to c and c−1 respectively. We denote by ∆

the annular diagram corresponding to cR and cL. When the two boundaries ∆R and
∆L of ∆ have a common vertex we implicitly assume that cR and cL are indexed so
that this vertex corresponds to the same index along ∆R and ∆L. We consider the
following set of double paths:

• D+ is the set of crossing double paths of positive length of cR and d,

• D0 is the set of crossing double paths (i, j) of zero length of cR and d such that
either

– the two boundaries of ∆ coincide at ∆L(i) = ∆R(i) and d[j − 1, j] =
cL[i− 1, i] or d[j, j + 1] = cL[i, i+ 1], or

– one of d[j, j−1] or d[j, j+1] is the label of a spoke (∆R(i),∆L(i′)) of ∆ and
d[j− 2, j− 1] = cL[i′− 1, i′] in the first case or d[j+ 1, j+ 2] = cL[i′, i′+ 1]
in the other case.

• D− is the set of crossing double paths ([i
`→]c−1

L
, [j

`→]d) (` ≥ 0) of c−1
L and d

such that none of the following situations occurs:

– the two boundaries of ∆ coincide at ∆−1
L (i) = ∆R(i′) and d[j − 1, j] =

cR[i′ − 1, i′],

– the two boundaries of ∆ coincide at ∆−1
L (i+`) = ∆R(i′) and d[j + `, j + `+ 1] =

cR[i′, i′ + 1],

– d[j−1, j] is the label of a spoke (∆−1
L (i),∆R(i′)) of ∆ and d[j−2, j−1] =

cR[i′ − 1, i′],

1Those crossing double points should not be confused with the combinatorial crossings of an
immersion as defined in Section 3.3. Which notion of crossings is used should always be clear from
the context.
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– d[j + `, j + ` + 1] is the label of a spoke (∆−1
L (i + `),∆R(i′)) of ∆ and

d[j + `+ 1, j + `+ 2] = cR[i′, i′ + 1].

Those definitions allow the case c ∼ d, recalling that the index paths of a double path
of c must be distinct by definition. Referring to Section 4.3, we view the underlying
surface of the system of quads Σ as a quotient D/Γ of the Poincaré disk. The system
of quads lifts to a quadrangulation of D and the lifts of a combinatorial curve in Σ
are combinatorial bi-infinite paths in this quadrangulation. By Remark 3.4.6, if the
combinatorial curve is geodesic (resp. canonical) so are its lifts. In this case, each
lift is simple by Corollary 3.4.4. We fix a lift c̃R of cR and consider the set B/τ of
Lemma 3.5.1 corresponding to the classes of lifts of d whose limit points alternate
with the limit points of c̃R along ∂D.

Proposition 3.7.1. B/τ is in 1-1 correspondence with the disjoint union D+∪D0∪
D−.

Proof. Let c̃L be the lift of cL with the same limit points as c̃R. These two lifts
project onto the boundaries of the annular diagram ∆ and thus form an infinite strip
∆̃ of width at most 1 in D composed of paths and quad staircases (possibly a single
infinite staircase). We shall define a correspondence between B/τ and D+∪D0∪D−.
To this end we consider a lift d̃ of d whose limit points alternate with those of c̃R. In
other words, d̃ ∈ B. The lift d̃ must cross ∆̃. Let i and j be respectively the smallest
and largest index k such that d̃(k) is in ∆̃. By Remark 3.4.5, the corresponding
subpath d̃[i, j] of d̃ is canonical. Since D is simply connected, d̃[i, j] is homotopic
to any path joining the same extremities and we can apply Lemma 3.4.7 to show
that d̃[i, j] is actually contained in ∆̃ and that it can be decomposed as either λ.ρ,

ρ.λ, λ.e.ρ or ρ.e.λ where e is a spoke of ∆̃, ρ = c̃R[a
r→] and λ = c̃L[b

`→] for some
a, b, r, ` ∈ Z.

• If r > 0 then by Point 5 of Lemma 3.4.7 we have d̃ ∩ c̃R = ρ so that this
intersection defines a maximal double path of d̃ and c̃R. It must be crossing
since d̃ ∈ B. Its projection on Σ is a crossing double path of length r > 0 of d
and cR, hence in D+, to which we map d̃.

• If r = 0 and ` > 0, then Point 6 of Lemma 3.4.7 implies d̃∩ c̃R = ρ. As above, ρ
must define a crossing double path of length zero of d̃ and c̃R. We map d̃ to the
projection of this crossing double point on Σ and remark that this projection
is in D0.

• Otherwise, we must have r ≤ 0 and ` ≤ 0 by Point 6 of Lemma 3.4.7. If ` < 0
then Point 4 of Lemma 3.4.7 implies d̃ ∩ c̃L−1 = λ. This intersection defines
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a crossing double path of d̃ and c̃L
−1 and we map d̃ to its projection on Σ. If

` = 0 and r < 0 then Point 6 of Lemma 3.4.7 implies d̃ ∩ ˜c−1
L = λ, which also

holds true if r = ` = 0. In both cases λ corresponds to a crossing double path

of length zero of d̃ and ˜c−1
L and we map d̃ to its projection on Σ. We finally

remark that this last projection or the above one belong to D−.

Because ∆̃ is left globally invariant by τ (the hyperbolic motion that sends c̃R(0)
to c̃R(|cR|)), we have τ(d̃) ∩ ∆̃ = τ(d̃) ∩ τ(∆̃) = τ(d̃ ∩ ∆̃). It follows that d̃ and τ(d̃)
are mapped to the same crossing double path by the above rules. We thus have a
well defined map B/τ → D+ ∪ D0 ∪ D−. The uniqueness of the decomposition in
Lemma 3.4.7 implies that this map is 1-1. In order to check that the map is onto we

consider a maximal crossing double path P = ([i mod |cR|
`→]cR , [j mod |d| `→]d)

of cR and d in D+. By the unique lift property of coverings there is a unique lift d̃
of d such that d̃(j) = c̃R(i) and P lifts to a crossing double path of d̃ and c̃R. By
Lemma 3.6.1 this double path is the only intersection of d̃ and c̃R so these lifts must
have alternating limit points. In other words d̃ is in B and is mapped to P. A similar
argument applies to the crossing double paths of D0 and D−.

This leads to a simple algorithm for computing combinatorial crossing numbers.

Corollary 3.7.2. Let c, d be primitive curves of length at most ` on a combinatorial
surface with complexity n. The crossing numbers i(c, d) and i(c) can be computed in
O(n+ `2) time.

Proof. We may assume that the surface is a system of quads. By Theorem 2.3.8
we may compute the canonical forms of c, c−1 and d in O(`) time. According to
Proposition 3.7.1, we have

i(c, d) = |D+|+ |D0|+ |D−|

The set D+ can be constructed in O(`2) time. Indeed, since the maximal double
paths of c and d form disjoint sets of double points by Corollary 3.6.4, we just need
to traverse the grid Z/|c|Z×Z/|d|Z and group the double points into maximal double
paths. Those correspond to diagonal segments in the grid that can be computed in
time proportional to the size of the grid. We can also determine which double paths
are crossing in the same amount of time. Likewise, we can construct the sets D0

and D− in O(`2) time. We can also compute i(c) in quadratic time using that
i(c, c) = 2i(c).
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3.8 Non-Primitive Curves and Proof of Theorem 3.1.1

In order to finish the proof of Theorem 3.1.1, we need to tackle the case of non-
primitive curves. Thanks to canonical forms, computing the primitive root of a
curve becomes extremely simple.

Lemma 3.8.1. Let c be a combinatorial curve of length ` > 0 in canonical form. A
primitive curve d such that c is homotopic to dk for some integer k can be computed
in O(`) time.

Proof. By Theorem 2.3.8, we may assume that c and d are in canonical form. By
Remark 3.4.6, the curve dk is also in canonical form. The uniqueness of the canonical
form implies that c = dk, possibly after some circular shift of d. It follows that d
is the smallest prefix of c such that c is a power of this prefix. It can be found in
O(`) time using a variation of the Knuth-Morris-Pratt algorithm to find the smallest
period of a word [Knuth et al., 1977].

The geometric intersection number of non-primitive curves is related to the geo-
metric intersection number of their primitive roots. The next result is rather intuitive,
see Figure 61, and is part of the folklore although we could only find references in
some relatively recent papers.

Proposition 3.8.2 ([de Graaf and Schrijver, 1997; Gonçalves et al., 2005]). Let c
and d be primitive curves and let p, q be integers. Then,

i(cp) = p2 × i(c) + p− 1 and i(cp, dq) =

{
2pq × i(c) if c ∼ d or c ∼ d−1,
pq × i(c, d) otherwise.

Proof of Theorem 3.1.1. Let c, d and Σ be the two combinatorial curves and the
combinatorial surface as in the Theorem. We first assume that the Σ has negative
Euler characteristic. We can compute the canonical forms of c and d in O(`) time
after O(n) time preprocessing by Lemma ??. Thanks to Lemma 3.8.1 we can further
determine primitive curves c′ and d′ and integers p, q such that c ∼ c′p and d ∼
d′p in O(`) time. We can compute i(c′, d′) and i(c′) in O(`2) time according to
Corollary 3.7.2. We finally use the formulas in the previous proposition to deduce
i(c, d) and i(c) from i(c′, d′) and i(c′).

If Σ is a sphere or a disk, then every curve is contractible and i(c, d) = i(c) = 0.
If Σ is a cylinder, then every two curves can be made non crossing so that i(c, d) = 0
while i(c) = p−1. Finally, if Σ is a torus, the radial graph of the system of quads can
be decomposed into two loops α, β such that c ∼ αx·βy and d ∼ αx

′ ·βy′ . We may then
use the classical formulas: i(c) = gcd(x, y)−1 and i(c, d) = | det

(
(x, y), (x′, y′)

)
|.
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c
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p× p×q×
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p×q×
p× q×p×

Figure 61: Left, each self-intersection of c gives rise to p2 self-intersections of its pth
power obtained by wrapping p times around c in a small tubular neighborhood. The
starting basepoint also adds p − 1 self-intersections. Middle, each intersection of c
and d gives rise to pq intersections of (homotopic perturbations of) cp and dq. Right,
when c and d are homotopic, one should count 2pq intersections per self-intersection
of c.

3.9 Computing a Minimal Immersion

In the subsequent sections we only deal with the self-intersection number of a single

curve. We thus drop the subscript c to denote an index path [i
`→] or an arc oc-

currence [i, i+ 1]. We also implicitly consider intersections as self-intersections. By
Theorem 3.1.1 we can compute the geometric intersection number of a curve effi-
ciently. Here, we describe a way to compute a minimal immersion, that is an actual
immersion with the minimal number of intersections. We refer to the combinatorial
framework of Section 3.3 to describe such an immersion combinatorially. Thanks
to Lemma 3.3.1, we know that this framework faithfully encodes the topological
configurations.

Bigons and monogons. A bigon of an immersion I of c is a pair of index paths

([i
`→], [j

k→]) whose sides c[i
`→] and c[j

k→] have strictly positive lengths, are
homotopic, and whose tips (i, j) and (i+ `, j + k) are combinatorial crossings for I.

A monogon of I is an index path [i
`→] of strictly positive length such that (i, i+ `)

is a combinatorial crossing and the image path c[i
`→] is contractible.

Proposition 3.9.1. A combinatorial immersion of a primitive curve has excess self-
crossing if and only if it contains a bigon or a monogon.

Proof. We just need to prove the existence of a bigon or monogon for a continuous
realization γ : R/Z → S of the combinatorial immersion. This bigon or monogon
corresponds to a combinatorial bigon or monogon as claimed in the Proposition. To
prove the topological counterpart, we first note as in Section 3.5 that the minimal
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number of intersections is counted by the lifts of γ whose limit points alternate along
∂D. It follows that γ is minimally crossing when its lifts are pairwise disjoint unless
the corresponding limit points alternate in ∂D and they should intersect exactly once
in that case. When γ is not minimally crossing there must exist two lifts intersecting
more than necessary, thus forming a bigon in D. The projection of such a bigon on S
gives the desired result. Note that a statement similar to the one in the Proposition
holds for an immersion of a pair of primitive curves c and d with excess crossing.

We provide a purely combinatorial proof of the direct implication of the Propo-
sition in the case of two curves.

Combinatorial Proof. We consider the case of an immersion I of two curves c and d.
Suppose that I has p excess crossings. We shall prove the stronger claim that I has
at least dp/2e bigons whose tips are pairwise distinct. Let J be an immersion of two
curves c′ and d′ respectively homotopic to c and d such that J has no excess cross-
ings. Consider a sequence of elementary homotopies from (c′, d′) to (c, d). Following
the above remark, we can insert adjacent transpositions between each elementary
homotopy in order to obtain a sequence of elementary moves from J to I. See the
above remark. The claim is trivially verified by J . We now check that the claim
remains true after each elementary move. If the move is an adjacent transposition
we may assume that we exchange an arc occurrence of c with an arc occurrence of d
since we only consider intersections between c and d. Without loss of generality we
also assume exchanging the forward occurrences [i, i + 1]c and [j, j + 1]d. There are
three cases to consider.

1. If none of (i, j) and (i+ 1, j + 1) is a crossing then the transposition adds two
crossings that we may pair as the tips of a new bigon. We now have p + 2
excess crossings with at least d(p+ 2)/2e bigons as required.

2. If (i, j) is a crossing but (i+ 1, j + 1) is not and if (i, j) is paired to form the

tips of a bigon, say ([i
`→]c, [j

k→]d), we may just replace this bigon by ([i+ 1
`−1→

]c, [j + 1
k−1→ ]d) sliding its tip (i, j) to (i+ 1, j + 1). A similar procedure applies

when (i+ 1, j + 1) is a crossing but (i, j) is not. In each case the number of
excess crossings and bigons is left unchanged.

3. It remains the case where both (i, j) and (i+ 1, j + 1) are crossings. If none of
the two is paired to form the tips of a bigon, then the transposition removes two
crossings and no pairing, so that the claim remains trivially true. If exactly one
of the two is paired or if the two are paired together, we loose one bigon and
two crossings after the transposition so that the claim remains true. Otherwise,
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there are two bigons of the form ([i
`→]c, [j

k→]d) and ([i+ 1
`′→]c, [j + 1

k′→]d)

that we can recombine to form the bigon ([i+ `
1+`′−`→ ]c, [j + k

1+k′−k→ ]d). We
again have one less bigon and two less crossings.

We now consider the application of an elementary homotopy as described before the
proof. There are again three possibilities.

1. If the homotopy replaces a nonempty subpath u of a facial walk uv−1 by the
nonempty complementary part v then no crossing may appear or disappear as
we assume the immersion in good position. In particular, no crossing may use
an internal vertex of u and u is either entirely included in or excluded from
any side of any bigon. We can replace u by v in any bigon side where u occurs
to obtain valid bigons in the new immersion after the elementary homotopy is
applied. The number of excess crossings and bigons is left unchanged.

2. When u is empty in the above replacement, or when inserting a spur, we may
only add crossings by pairs forming bigons with one zero-length side and the
complement of u or the spur as the other side. A similar analysis as in case (2)
of a transposition applies to take care of each pair.

3. When v is empty in the above replacement, or when removing a spur, we
may only remove crossings by pairs and a similar analysis as in case (3) of a
transposition applies to take care of each pair.

This ends the proof for the case of two curves. A similar proof holds for the existence
of a bigon or a monogon in an immersion with excess self-intersection. This time
the excess crossings are either paired to form bigons or left alone as the tips of
monogons.

Suppose that I is a combinatorial immersion of a primitive geodesic c. It cannot
have a monogon by Corollary 3.4.4. Hence, according to Proposition 3.9.1 the im-
mersion I is minimal unless it contains a bigon. The two sides of such a bigon may
share some common part that would prevent us from swapping these two sides. In
agreement with the terminology of Hass and Scott [Hass and Scott, 1985], a bigon

([i
`→], [j

k→]) is said singular if

1. its two index paths have disjoint interiors, i.e. they do not share any arc
occurrence;
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[i, i+ 1]

[j, j + 1] [j + k, j + k − 1]

[i+ `, i+ `− 1] [j, j + 1]

[i, i+ 1] [i+ `, i+ `− 1]

[j + k, j + k − 1]

Figure 62: Right, the realization of the bigon ([i
`→], [j

k→]) where j = i+ ` and
[i, i− 1] is in-between [i+ `, i+ `− 1] and [j + k, j + k − 1], and [j + `, j + `+ 1] is
in-between [i, i+ 1] and [j, j + 1]. The small purple part is at the same time the
beginning of the red side of the bigon and at the end of the blue side. Swapping this
bigon does not reduce the number of crossings.

2. when j = i+ ` the following arc occurrences

[i, i− 1], [j, j − 1], [i, i+ 1], [j + k, j + k + 1], [j, j + 1], [j + k, j + k − 1]

do not appear in this order or its opposite in the circular ordering induced by
I at c(j);

3. when i = j + k the following arc occurrences

[i, i− 1], [j, j − 1], [i+ `, i+ `− 1], [i, i+ 1], [i+ `, i+ `+ 1], [j, j + 1]

do not appear in this order or its opposite in the circular ordering induced by
I at c(i).

Note that when c is geodesic and k = −` there cannot be any identification between

{i, i+ `} and {j, j − `}. For instance, i = j implies c[i
`→] ∼ c[j

−`→] = c[i
−`→]

so that c[i− ` 2`→] ∼ 1, while j = i+ ` implies c[i
`→] ∼ c[j

−`→] = c−1[i
`→] so

that c2[i
`→] ∼ 1. In both cases c would have a monogon which would contradict

Lemma 3.4.4.
When c is primitive and geodesic, we cannot have j = i+ ` and i = j + ` at the

same time. Otherwise, we must have k = ` by the preceding paragraph, and c would

be a circular shift of c[i
`→] · c[j `→] and thus homotopic to a square. Also remark

that when one of the last two conditions in the definition is not satisfied, the bigon
maps to a non-singular bigon in the continuous realization of I as in Lemma 3.3.1.
See Figure 62.

When the bigon is singular we can swap its two sides by exchanging the two arc
occurrences [i+ p, i+ p+ 1] and [j + εp, i+ ε(p+ 1)], for 0 ≤ p < ` and k = ε`.
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Lemma 3.9.2. Swapping the two sides of a singular bigon of an immersion of a
geodesic primitive curve decreases its number of crossings by at least two.

This is relatively obvious if one considers a continuous realization of the immer-
sion, performs the swapping and comes back to a combinatorial immersion as in the
proof of Lemma 3.3.1. We nonetheless provide a purely combinatorial proof.

Proof. Consider a singular bigon ([i
`→], [j

`→]) of an immersion I of a closed prim-
itive canonical curve c. Let J be the immersion after the bigon has been swapped.
We shall partition the set of potential double points and show that the net change
of the number of crossings with respect to I and J is non positive in each part. As
the tips of the bigon are not crossings in J , this will prove the lemma. We set for

x ∈ Z/|c|Z \ ([i
`→] ∪ [j

`→]) and 0 < p, q < `:

Dp,q = {(i+ p, j + q), {(i+ q, j + p)}, Dx,p = {(x, i+ p), (x, j + p)},
Dp,0 = {(i, i+ p), (i, j + p), (j, i+ p), (j, j + p)}, Dx,0 = {(x, i), (x, j)},
Dp,` = {(i+ `, i+ p), (i+ `, j + p), (j + `, i+ p), (j + `, j + p)}, Dx,` = {(x, i+ `), (x, j + `)},
D′p,q = {(i+ p, i+ q), {(j + q, j + p)}, D1 = {(y, z) | y, z 6∈ ([i

`→] ∪ [j
`→])},

D2 = {(i, i+ `), (i, j + `), (j, j + `), (j, i+ `)}, D3 = {(i, j), (i+ `, j + `)}

When i = j + ` or j = i+ `, the set D2 consists of three double points only (or zero
if c(i) 6= c(i+ `)). Note that we cannot have both equalities as this would imply
j = j + 2`, whence ` = |c|/2 and c would be a square, in contradiction with the
hypothesis that c is primitive. For each double point in D1 the four incident arc
occurrences are left in place in I and J . It ensues that D1 has the same crossings in
I and J . The double points in D3 are the tips of the bigon. They are crossings in I
and not in J , whence a net change of −2 crossings. For each of Dx,p,Dp,q or D′p,q, the
first double point in their above definition is a crossing in I (resp. J ) if and only if
the second one is a crossing in J (resp. I). Their net change of crossings is thus null.
For Dx,0, Dx,`, Dp,0 and Dp,` there are a few case analysis depending on the relative
ordering of the two arc occurrences incident to x (resp. i+ p, j + p) with respect
to the crossing (i, j) (resp. (i+ `, j + `). In each case (see Figure 63) the number
of crossings cannot increase from I to J . For D2 there are three cases according
to whether i+ ` = j, j + ` = i, or none of the two identifications occurs. Recall
from the paragraph before the lemma that we cannot have both identifications. The
first two cases can be treated the same way. See Figure 64. The number of possible
configurations is much larger in the last case, i.e. when i+ ` 6= j and j + ` 6= i. We
essentially have to shuffle two circular orderings of length four corresponding to the
two crossing tips. Without loss of generality we can assume that the path from i to
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Figure 63: Up to some obvious symmetries the case Dx,0, Dx,`, Dp,0 or Dp,` has four
distinct possible configurations. The blue and red strands represent the crossing (i, j)
(resp. (i+ `, j + `)) and each arrow links the left configuration before the bigon swap
(in I) with the right configuration after the swap is applied (in J ).

Figure 64: When i+ ` = j, the end of [i
`→] overlaps with the beginning of [j

`→] (in
the purple strand). The third configuration on the right is actually forbidden by the
definition of a singular bigon! It corresponds to the non-singular bigon on Figure 62.

i+ ` is the right side of the bigon. We consider the following arc occurrences:

α = [i, i+ 1], α′ = [i, i− 1], β = [j, j + 1], β′ = [j, j − 1]

γ = [i+ `, i+ `+ 1], γ′ = [i+ `, i+ `− 1], δ = [j + `, j + `+ 1], δ′ = [j + `, j + `− 1]

Since (i, j) and (i+ `, j + `) are crossings we must see (α, β, α′, β′) in this counter-
clockwise order around the vertex c(i) = c(i+ `) and similarly for (γ, δ, γ′, δ′). We
denote by S1 and S2, respectively, these two circular sequences. We need to consider
the effect of the bigon swapping on all the possible shuffles of S1 and S2. The re-
striction of these shuffles to α, β, γ and δ gives the 6 possible shuffles of (α, β) and
(γ, δ). Among them the order (α, δ, γ, β) cannot occur. Indeed, since the bigon is
a thick double path the arcs c(α) and c(β) either coincide or form a corner of a
quad. This would force c(δ) and c(γ) to lie in a similar configuration. In turn, the
constrained order S2 would also enforce c(δ′) and c(δ) to coincide or form a corner of
a quad in contradiction with the hypothesis that c has no spurs or brackets. Similar
arguments show that the orders (α, γ, β, δ), (α, δ, β, γ), (α, γ, δ, β) and (α, β, δ, γ) can
only occur as factors in the possible shuffles of S1 and S2. These 4 orders thus leads
to 24 distinct shuffles of S1 and S2 by factoring with the 6 shuffles of (α′, β′) with
(γ′, δ′). By exchanging the roles of (α, β) and (γ, δ) and by turning clockwise instead
of counterclockwise we see that (α, δ, β, γ) leads to the same orders as (α, γ, β, δ) and
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a similar correspondence holds for (α, γ, δ, β) and (α, β, δ, γ). We thus only need to
check the 12 configurations depicted on Figure 65. It remains to consider the order

Figure 65: Effect of swapping the singular bigon ([i
`→], [j

`→]) on D2 for all the orders
including the factor (α, γ, β, δ) or (α, γ, δ, β). The blue strand represents (α, α′), the
red one (β, β′), the orange one (γ, γ′) and the green one (δ, δ′).

(α, β, γ, δ). Because of the constrained order S2, γ′ and δ′ cannot lie between γ and
δ. This leaves out

(
4
2

)
= 6 possible shuffles of (γ′, δ′) and (α, β, γ, δ):

S ′1 : (α, β, γ, δ, γ′, δ′) S ′2 : (α, β, δ′, γ, δ, γ′) S ′3 : (α, β, γ′, δ′, γ, δ)
S ′4 : (α, δ′, β, γ, δ, γ′) S ′5 : (α, γ′, β, δ′, γ, δ) S ′6 : (α, γ′, δ′, β, γ, δ)

We finally shuffle each of these orders with (α′, β′). Since α′ and β′ cannot lie between
α and β, we obtain

(
6
2

)
= 15 possible shuffles when considering either S ′1, S

′
2 or S ′3,(

5
2

)
= 10 possible shuffles with S ′4 or S ′5, and

(
4
2

)
= 6 possible shuffles with S ′6. By

swapping left and right and turning clockwise instead of counterclockwise, we remark
that S ′1 and S ′3 lead to the same orders and similarly for S ′4 and S ′5. We thus only
need to consider the shuffles of (α′, β′) and S ′1, S

′
2, S

′
4 or S ′6 to complete the inspection

of all the cases. Those shuffles are represented on Figures 66, 67, 68, 69 respectively.
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α
α′

β

β′

δγ

γ′δ′

Figure 66: Effect of the bigon swapping on the 15 shuffles of S ′1 and (α′, β′).

In each of the configurations, we trivially check that the number of crossings
is not increasing. This allows to conclude the lemma when the two index paths
of a singular bigon are directed the same way. A similar analysis can be made
when their directions are opposite, that is when the considered bigon has the form

([i
`→], [j

−`→]).

Hence, by swapping singular bigons we may decrease the number of crossings
until there is no more singular bigons. It follows from the next lemma that the
resulting immersion has no excess crossing.

Theorem 3.9.3 (Hass and Scott [Hass and Scott, 1985, Th. 4.2]). An immersion
of a primitive geodesic curve has excess crossing if and only if it contains a singular
bigon.

Proof. We realize I by a continuous curve γ with the same construction as in
Lemma 3.3.1. By Theorem 4.2 in [Hass and Scott, 1985] the curve γ has a sin-
gular bigon. In turn this bigon corresponds to a singular bigon in I.

In the next section we describe how to detect bigons in practice.
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α

α′

β

β′

δγ

γ′
δ′

Figure 67: Effect of the bigon swapping on the 15 shuffles of S ′2 and (α′, β′).
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Figure 68: Effect of the bigon swapping on the 10 shuffles of S ′4 and (α′, β′).

α

α′

β

β′

δγ

γ′δ′

Figure 69: Effect of the bigon swapping on the 6 shuffles of S ′6 and (α′, β′).
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3.10 Finding Bigons

If an immersion I of a primitive geodesic c has a bigon then its two sides have equal
length according to Corollary 3.4.3 and form a sequence of paths and staircases
following the description of Theorem 3.4.2. In particular, the vertices of the two
sides can be put in 1-1 correspondence and corresponding vertices are at distance at
most one. Hence, when looking for bigons in I, we can start from any crossing (i, j)
and walk in parallel along the two sides from i and j, checking that the two sides
stay at distance one. However, we do not know a priori if the two sides will cross
again to form a bigon and the search may be unsuccessful. In order to analyze the
complexity of the bigon search we thus consider pair of paths that could potentially

be part of a bigon, but that are not necessarily so. Formally, a pair ([i
`→], [j

ε`→])

of distinct index paths such that c[i
`→] and c[j

ε`→] are corresponding subpaths of
homotopic geodesic paths is called a thick double path of length `. In other words,
a thick double path is such that its image paths can be extended to form homotopic
geodesic paths. As for a double path, a thick double path gives rise to a sequence
of ` + 1 index pairs (i+ k, j + εk) for k ∈ [0, `]. Let ∆ be a disk diagram whose
boundary is labelled by homotopic geodesic paths extending the thick double path
as illustrated on Figure 70.

i

j i+ `

j + ε`
∆

c[i
`→]

c[j
ε`→]

Figure 70: A thick double path extends to a pair of homotopic geodesics and bound
a partial diagram.

The restriction of ∆ to the part delimited by the thick double path is called a
partial diagram. In a partial diagram each index pair (i+ k, j + εk) may be in at
most one of five configurations: either the corresponding vertices coincide in the
partial diagram, or they appear diagonally opposite in a quad; in turn this quad may
be labelled by one of the (at most) four quads incident to either c[i, i+1] or c[j, j+ε].
A partial diagram is a maximal partial diagram if it cannot be extended to form
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a partial diagram of a longer thick double path.

Lemma 3.10.1. If c is a primitive geodesic curve each configuration of an index
pair may occur at most once in a partial diagram.

Proof. Suppose for a contradiction that the index pair (i, j) occurs twice in the same
configuration in a partial diagram of a thick double path of c. Exchanging the roles
of i and j if necessary, we may assume that the indices i, j are represented by integers
such that 0 < j − i ≤ |c|/2. The two occurrences of (i, j) are separated by a path
whose length is an integer multiple of |c|, say k|c|. We first assume that the two
index paths of the thick double path are both forward. In the partial diagram, c(i)
and c(j) label vertices that are either identical or opposite in a quad. They are thus
connected by a path p of length zero or two. We infer that

c[i
k|c|→] · p ∼ p · c[j k|c|→] ∼ p · c[i, j]−1 · c[i k|c|→] · c[i, j]

This can be written as c′k · q ∼ q · c′k where c′ = c[i
|c|→] is a cyclic permutation of c

and q = p · c[i, j]−1 is a (closed) path of length at most j− i+ 2. Since the homotopy
classes of the loops c′k and q are commuting they must admit a common primitive
root [Reinhart, 1962]. We thus have (i) c′k ∼ us and (ii) q ∼ ut for some primitive
curve u and some s, t ∈ Z. Relation (i) implies that c′ and us are also commuting so
that c′ is homotopic to a power of the primitive curve u. But c′ being also primitive
we actually have c′ ∼ u±1. By Remark 3.4.6, c′t is geodesic, hence has minimal length
in its homotopy class. From (ii) we obtain j − i+ 2 ≥ |t|.|c|. This is only possible if
t = 0 or if |t| = 1 and j − i = |c| − 2 (indices in a pair have the same parity).

• If t = 0, then q ∼ 1, so that p ∼ c[i, j]. Since c is geodesic, we must have
j − i ≤ |p| ≤ 2, hence j = i + 2 and the corresponding vertices must be
diagonally opposite in a quad. Two homotopic paths each of length two bound
a disk diagram composed of either a length two path or a single quad. In
other words, c[i, j] and p are either equal or bound the first quad in the partial
diagram. In either case we infer that c[i, j + 1] = c[i, j].c[j, j + 1] contains a
spur or a bracket, leading to a contradiction.

• If |t| = 1 and j − i = |c| − 2, then |c| = 4 (recall that 0 < j − i ≤ |c|/2). The
proof is delayed in Lemma 3.10.2.

We now assume that the thick double path is composed of a forward and a
backward index paths. Similarly to the previous case, we infer that c′ ∼ q ·(c′)−1 ·q−1,

where c′ = c[i
|c|→] and q = p · c[i, j]−1. Equivalently, c and its inverse are freely

homotopic. This is however impossible unless c is contractible.
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Lemma 3.10.2. Let c be a primitive geodesic of length four and let k be a positive

integer. Then c[0
4k→] and c[2

4k→] cannot bound a partial diagram where the index
pairs (0, 2) and (4k, 4k + 2) are in the same configuration.

Proof. Consider a partial diagram ∆ for the thick double path P = ([0
4k→], [2

4k→])
and suppose that the index pairs (0, 2) and (4k, 4k+2) are in the same configuration.

In order to reach a contradiction we will use the fact that c[0
2→] = c[4k

2→] label

the first arcs of the [0
4k→] side of P as well as the last arcs of the [2

4k→] side, and

similarly for c[2
2→] = c[4k − 2

2→].
If the first and last index pairs of P correspond to the same vertex in ∆, then

there are five possible configurations for the first two arcs on each side of P (depicted
on Figure 71, b1-5) and five possible configurations for the last two arcs on each side
of P (depicted on Figure 71, e1-5). Clearly, ∆ cannot start with a path part of length

two (case b1), as this would imply c[0
2→] = c[2

2→] and in turn c = c[0
2→].c[2

2→]
would be a square; this would contradict the fact that c is primitive. Case b2 leads

to the same contradiction noting that c[0
2→] ∼ c[2

2→]. Cases e1 and e2 can be
dealt with analogously. As in Lemma 3.10.6, we denote by (x, y) the conjunction of
configurations x and y.

• If the orientations of the first and last staircases in ∆ coincide, we easily obtain
that c(1) has degree 2 for the conjunctions (b3, e3), c(3) has degree 2 for (b4, e4),
c(1) has degree 3 for (b3, e4) and (b4, e3) and c(1) has degree 4 for (b3, e5),
(b4, e5), (b5, e3) and (b5, e4). In case (b5, e5) a quad has two sides labelled by
the same arc, which is forbidden by Lemma 3.10.4.

• If the orientations of the first and last staircases in ∆ are opposite then each
conjunction of b3, 4, 5 with e3, 4, 5 implies that a quad has two sides labelled
by the same arc, which is again forbidden.

When the first and last index pairs of P correspond to diagonally opposite vertices
in a quad, we get eight possible configurations for the first two arcs on each side of P
(depicted on Figure 71, B1-8) and eight possible configurations for the last two arcs
on each side of P (depicted on Figure 71, E1-8). All the pink quads in the figure
denote the same quad with the same orientation, recalling that the configuration for
the first and last index pairs of P is the same. We easily get in each case that a vertex
has degree at most 5, or that a quad has two sides labelled by the same arc, or that c
is a square (case (B2, E2)). In each case, we have thus reached a contradiction.

Corollary 3.10.3. Each configuration of an index pair may occur at most once in
the set of maximal partial diagrams.
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0
2

B1 B6B3

1

3

B2 B5 B8

b2 b3 b4 b5

c[0, 1]

c[2, 3]

c[1, 2]

c[3, 0]

B4 B7

0
21

3
e2 e3 e4 e5

0
2

0
2

b1

e1

E1 E6E3E2 E5 E8E4 E7

2

0

2

0

Figure 71: The possible configurations for the first two arcs and the last two arcs on
each side of P in the corresponding partial diagram.
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Proof. By the preceding Lemma, we only need to check that a configuration of an
index pair cannot occur twice in distinct partial diagrams of maximal thick double
paths. This is essentially the unique lift property of coverings.

Proof of Theorem 3.1.2. By Theorem 2.3.8 we can assume that c is geodesic. We
first consider the case where c is primitive. Let I be a randomly chosen immersion of
c. We store the induced vertex orderings of the arc occurrences in arrays so that we
can test if a double point is a crossing in constant time using pointer arithmetic. By
Theorem 3.9.3, if I has excess crossing it has a singular bigon. This singular bigon
defines a thick double path that must appear in some maximal partial diagram of I
as two boundary paths with common extremities. Hence, in order to find a singular
bigon we just need to scan the index pairs in every maximal partial diagram and test
whether the two sides between consecutive index pairs define a singular bigon. By
the very definition of a singular bigon, each test can be easily performed in constant
time. The number of tests is itself bounded by the number of index pairs in all the
maximal partial diagrams. This is O(`2) by Corollary 3.10.3. Once a singular bigon
is found we swap its sides in O(`) time. This preserves the geodesic character and,
by Lemma 3.9.2, the number of crossings is reduced by at least two. Since I may
have O(`2) excess crossings, we need to repeat the above procedure O(`2) times and
we may conclude the theorem in the case of primitive curves. When c = dp, with d
primitive, we first find a minimally crossing immersion for d by the above procedure.
We further traverse the immersion p times duplicating d as many times. As we start
each traversal we connect the last arc occurrence of the previously traversed copy
with the first occurrence of the next copy. We continue this copy by duplicating each
traversed arc occurrence to its right. It is easily seen that the number of crossings
of the final immersion of c, after connecting the last traversed arc with the first one,
satisfies the formula in Proposition 3.8.2.

We end this section with some refinements of Lemma 3.10.1 and its Corollary.
We first highlight a simple property of the system of quads.

Lemma 3.10.4. The facial walk of a quad cannot contain an arc twice, either with
the same or the opposite orientations.

Proof. If the facial walk of a quad contains two occurrences of an arc with the same
orientation, then their identification creates a Möbius strip in the system of quads,
in contradiction with its orientability. If the facial walk contains two consecutive
occurrences of an arc with opposite orientations, then their common endpoint must
have degree one in the system of quads. This contradicts the minimal degree 8 in our
system of quads. Finally, if the facial walk contains non consecutive occurrences of
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m

i

j

m

m+ 1

m+ 1 i+ k

j − k

m

m m

m

m

m

Figure 72: When the index pair (m,m) corresponds to distinct vertices (the thick m
dots) in the diagram, the arc c[m,m+ 1] labels two arcs that may be in one of four
possible configurations. The whole diagram is only represented in the left case. The
red strip projects to a Möbius strip in the system of quads.

an arc with opposite orientations, then their identification creates a cylinder bounded
by loop edges. However, the radial graph being bipartite, this cannot occur.

Lemma 3.10.5. Let c be a primitive geodesic curve. If a forward index path [i
k→]

and a backward index path [j
−k→] have homotopic image paths c[i

k→] ∼ c[j
−k→], then

they cannot share any index.

Proof. Remark that we cannot have i = j for otherwise c[j − k 2k→] = (c[j
−k→

])−1.c[i
k→] = 1 in contradiction with Corollary 3.4.4. Likewise, we cannot have

i+k = j−k. By way of contradiction, suppose that the index paths [i
k→] and [j

−k→]
have a common index i + r = j − t for some integers 0 ≤ r, t ≤ k. By the previ-
ous remark we have 0 < r+t

2
< k. It follows that (m,m) is an interior index pair of

([i
k→], [j

−k→]), where m = i+ r+t
2

= j− r+t
2

(recall that i and j have the same parity).

Consider a disk diagram for c[i
k→] ∼ c[j

−k→]. The index pair (m,m) cannot corre-
spond to the same vertex in the diagram since the path c[i, j] = c[i,m].c[m, j] would
then label a closed path in the diagram, hence be contractible. This would again
contradict Corollary 3.4.4. It ensues that (m,m) corresponds to opposite vertices in
a quad of the diagram. This quad is part of a staircase where the arc c[m,m + 1]
labels two arcs on either sides of the partial diagram. Figure 72 depicts the four pos-
sible configurations. In each case we infer that the system of quads would contain a
Möbius strip, in contradiction with its orientability.

Lemma 3.10.6. Two distinct index paths of a non-trivial primitive geodesic curve
c having homotopic image paths have length distinct from |c| and at most |c|+ 1.
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i
j

A1 C1B1

i+ 1

j + 1

i+ `

j + `

A2 B3 C3

a b c ed

c[i, i+ 1]

c[j, j + 1]

c[i+ 1, i+ 2]

c[j + 1, j + 2]

B2 C2

Figure 73: Upper row, the five possible configurations at the beginning of the disk

diagram for c[i
k→] ∼ c[j

k→]. Lower row, the eight possible configurations in the
neighborhood of the index pair (i, j) in this diagram.

Proof. When the index paths have opposite orientations, the previous lemma directly

implies the result. Let ` = |c| and let [i
k→], [j

k→] be two index paths such that

c[i
k→] ∼ c[j

k→]. Clearly, k 6= ` since otherwise c would be homotopic to a conjugate
of itself by the shorter curve c[i, j], in contradiction with the primitivity of c. For
the sake of a contradiction, suppose that k > `+1. Consider a diagram ∆ with sides

∆R and ∆L for the homotopic paths c[i
k→] ∼ c[j

k→]. By Lemma 3.10.1 the vertices
∆R(i + `) and ∆L(j + `) must be diagonally opposite in a quad of ∆. Using that

∆R[i
2→] and ∆R[i+ `

2→] are labelled by the same edges and similarly for ∆L[j
2→]

and ∆L[j + `
2→] we easily deduce that the system of quads has a quad with two

occurrences of a same arc in its facial walk, or has a vertex of degree at most 5,
or is non-orientable. This would contradict Lemma 3.10.4 or the hypotheses on the
system of quads. In details, Figure 73 depicts the five possible configurations (a,b,c,d)

for ∆R[i
2→] and ∆L[j

2→] in the diagram ∆ and the eight possible configurations

(A1-2, B1-3, C1-3) for ∆R[i+ `
2→] and ∆L[j + `

2→]. Remark that cases C1-3 are
symmetric to cases B1-3, so that we only need to consider the five configurations
A1-2, B1-3. We denote by (x,Y) ∈ {a,b,c,d,e} × {A1-2, B1-3} the conjunction of
configurations x and Y in ∆. The quads in configurations a,b,c,d are part of an
initial staircase in ∆ that may have a positive or negative orientation according to
whether or not its orientation is consistent with some default orientation of the quad
system and similarly for the final staircase containing ∆R(i+ `) and ∆L(j + `).

• If the orientations of the two staircases have the same sign, then the face
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to the right of ∆L[j, j + 1] has the same facial walk as the face to the right
of ∆L(j + `, j + ` + 1). The induced identifications imply that for (x,Y) ∈
{a,b,c,d}×{A1-2, B1-3}∪{e}×{A1-2,B1} a quad is bounded twice by the same
arc (with or without the same orientation) in contradiction with Lemma 3.10.4.
If (x,Y) ∈ {e} × {B2-3}, we easily deduce that c(i + 1) = c(j + 1) has degree
four in the system of quads, again a contradiction.

• When the initial and final staircases have opposite orientations the faces to
the right of ∆L[j, j + 1] and to the right of ∆L(j + `, j + ` + 1) (resp. to
the left of ∆R[i, i + 1] and to the left ∆R[i + `, i + +` + 1]) correspond to
the two faces incident to c[j, j + 1] (resp. c[i, i + 1]). We further split case
A2 into two variants A2′ and A2′′ according to whether the two quads (see
Figure 73) have consistent orientations or not. By the induced identifications
we derive the following forbidden situations: two occurrences of a same arc
in a quad for (x,Y) ∈ {a,d,e} × {A1, A2′′} ∪ {e} × {B1}, a degree two vertex
(namely c(j+1)) for (x,Y) ∈ {a,c}×{B1,B3}, a degree three vertex for (x,Y) ∈
{b}×{B1-3}∪{a,c}×{B2}∪{(e,B1)}, a degree four vertex for (x,Y) ∈ {b,c}×
{A1}∪{e}×{B2-3}∪{(a,A2′),(d,B1)}, a degree five vertex for (x,Y) ∈ {b,c}×
{A2′} ∪ {d} × {B2-3}, and finally a Möbius band for (x,Y) ∈ {b,c} × {A2′′}.

When the initial and final staircases in the above proof have consistent orienta-

tions it is sufficient to use that ∆R[i
1→] and ∆R[i+ `

1→] are labelled by the same

edge, and similarly for ∆L[j
1→] and ∆L[j + `

1→], in order to reach a contradiction

for cases A1 and A2. In other words, the two homotopic paths c[i
k→] ∼ c[j

k→]
cannot have length `+ 1. This leads to the following refinement.

Lemma 3.10.7. A bigon ([i
k→], [j

k→]) of an immersion of a primitive geodesic
curve c without intermediate crossings (i.e., no index pair (i + r, j + r), 1 < r < k,
is a combinatorial crossing) has length k < |c|.

Lemma 3.10.8. If two forward index paths of a canonical curve have homotopic
image paths then they actually have the same image paths, i.e. they form a double
path. In particular, bigons composed of two forward paths must be flat.2

Proof. By Theorem 3.4.2 the image paths bound a disk diagram composed of paths
and staircase. Remark that a staircase with both sides directed forward must have a

2In a preliminary version of this work posted on arXiv the authors erroneously claimed an
analogous property for the case of a bigon composed of a forward and a backward index paths.
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1̄ turn on its left side. Since the curve is canonical we infer that the diagram cannot
have any staircase, implying that the two sides coincide.

3.11 The Unzip Algorithm

We now turn to the original problem of Poincaré [Poincaré, 1904, §4], deciding
whether a given curve c is homotopic to a simple curve. In the affirmative we
know by Lemma 3.9.2 and Theorem 3.9.3 that some geodesic homotopic to c must
have a (combinatorial) embedding, i.e. an immersion without crossings. Rather
than swapping the sides of a singular bigon as in Lemma 3.9.2 we can choose to
switch one side along the other side. This will also decrease the number of crossings
if the bigon contains no other interior bigons. By considering interior-most bigons
only, we can thus enforce a given edge of c to stay fix as we remove crossings. This
suggests an incremental computation of an embedding in which the image of the
first arc occurrence is left unchanged: we assume that c is canonical and consider
the trivial embedding of its first arc occurrence [0, 1]. We next insert the successive
arc occurrences incrementally to obtain an embedding of the path formed by the
already inserted arcs. When inserting the occurrence [i, i+1] we need to compare its
left-to-right order with each already inserted arc occurrence β of its supporting arc.
If β 6= [0, 1] we can use the comparison of the occurrence [i−1, i] with the occurrence
γ preceding β (or succeeding β if it is a backward occurrence). If [i − 1, i] and γ
have the same supporting arc, we just propagate their relative order to [i, i+ 1] and
β. Otherwise, we use the circular ordering of the supporting arcs of [i− 1, i], γ and
[i, i+ 1] in order to conclude. When β = [0, 1], we cannot use the occurrence preced-
ing [0, 1] as it is not yet inserted. We rather compare [i, i+1] and [0, 1] as follows. In
the Poincaré disk, we consider two lifts d̃i and d̃0 of c such that d̃i[i, i+ 1] = d̃0[0, 1].
We decide to insert [i, i + 1] to the left (right) of [0, 1] if one of the limit points of
d̃i lies to the left (right) of d̃0. Note that when c is homotopic to a simple curve the
two limit points of d̃i should lie on the same side of d̃0.

After comparing [i, i + 1] with all the occurrences of its supporting arc, we can
insert it in the correct place. If no crossings were introduced this way, we proceed
with the next occurrence [i+1, i+2]. It may happen, however, that no matter how we
insert [i, i+1] in the left-to-right order of its supporting arc, the resulting immersion

of [0
i+1→] will have a combinatorial crossing. In order to handle this case, we first

check if [i, i+1] is switchable, i.e. if for some k ≥ 0 and some turns t, u the subpath

p := c[i
k+2→ ] has turn sequence t2k1u and the index path [i

k+2→ ] does not contain the
arc occurrence [0, 1]. When [i, i+ 1] is switchable we can switch p to a new subpath
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Figure 74: The arc [i, i+ 1] is switchable.
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Figure 75: A switch may avoid a crossing.

p′ with turn sequence (t−1)1̄2̄k(u−1) such that p and p′ bound a diagram composed
of a single horizontal staircase. See Figure 74. We indeed perform the switch if some
intersection is actually avoided this way. More formally, this happens when there is
a crossing (i, j) such that the turn of (c[j, j+ 1], c[i, i+ 1]) or of (c[j, j− 1], c[i, i+ 1])
is one as illustrated on Figure 75. Note that replacing p by p′ leads to a curve c′

that is still geodesic and homotopic to c. Moreover, the part of c′ that remains
to be embedded is in canonical form as it contains no 1̄ turns. We then insert
the arc occurrence [i, i + 1] and proceed with the algorithm using c′ in place of c.
The successive switches in the course of the computation untangle c incrementally
and we call our embedding procedure the unzip algorithm. For further reference
we make some observations that easily follows from the above switch procedure and
the fact that c is initially canonical.

Remark 3.11.1. If [i, i + 1] is switchable but not switched at the time of being
processed it remains true until the end of the algorithm, meaning that the vertex of
index i is directly followed by a subpath p with a turn sequence of the form 2k1 (k
may get smaller if some other arc of p is switched). Similarly, if [i, i + 1] is not
switchable because of an inappropriate turn sequence, it remains true until the end
of the algorithm.

Remark 3.11.2. Let c′ be a curve homotopic to c obtained after a certain number
of switches during the execution of the unzip algorithm. Then c′ cannot contain a
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subpath with turn sequence 1̄2̄∗ that ends at index 0, nor can it contain a subpath
with turn sequence 2̄∗1̄ that starts at index 0.

Lemma 3.11.3. The unzip algorithm applied to a canonical primitive curve c of
length ` can be implemented to run in O(` log2 `) time.

Proof. We first traverse c in reverse direction to mark all the switchable arcs. In the
course of the algorithm, each time a switchable arc triggers the switch of a subpath
p we unmark all the arcs in p except the last one that may become switchable
(depending on the last turn of p and on the status of the arc following p). It easily
follows that an arc can be switched at most twice and that the amortized cost for the
switches is linear. Alternatively, we could use the run-length encoded turn sequence
of c (as defined in [Erickson and Whittelsey, 2013]) to detect each switchable arc and
update the turn sequence in constant time per switches. In a preprocessing phase we
also compute the relative order of [0, 1] with all the other occurrences of the same arc
in c as follows. If c[i, i+1] = c[0, 1], the corresponding arc occurrences form a double
path of length one and we compute their relative order by extending maximally this
double path in the backward direction. Looking at the tip of this double path, say
(j, k), we can decide which side is to the left of the other. Indeed, the three arcs
c[j, j − 1], c[k, k − 1] and c[j, j + 1] = c[k, k + 1] must be pairwise distinct and their
circular order about their common origin vertex in the system of quads provides the
necessary information as follows from Lemma 3.10.8.

The computation of the maximal extensions in the backward direction amounts
to evaluate the longest common prefix of c−1 with all its circular shifts. Overall, this
can be done in O(`) time thanks to a simple variation of the Knuth-Morris-Pratt
algorithm. We next initialize an empty (balanced) binary search tree for every edge
of the system of quads. Assuming a default orientation of each edge, its search tree
should eventually contain the set of occurrences of the corresponding arc using the
left-to-right order induced by the embedding.

We now traverse c in the forward direction starting with [0, 1] and insert each
traversed arc occurrence α = [i, i + 1] in its tree. If the search tree is empty, we
just insert α at the root. Otherwise, either α is switchable and needs to be switched
to a new arc a, or it should be inserted into a non-empty search tree. The former
case can be easily detected in O(log `) time using a dichotomy over the occurrences
of a: α needs to be switched when one of these occurrences defines a
crossing with α at their common endpoint. In the latter case, we perform the
usual tree insertion: each time α must be compared with some already inserted arc
occurrence β 6= [0, 1] we can use the comparison of the occurrence preceding α with
the occurrence preceding β (or succeeding β if it is a backward occurrence). This
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Figure 76: Top: the arc c(α) may be in one of four possible configurations with
respect to the first arc c[01]. Middle and bottom row: from its initial canonical
position, α is switched to the same arc as [0, 1].

b bb b
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Figure 77: The relative positions of a and b.

takes O(log `) time. When β = [0, 1] we can use our precomputed comparisons unless
α was previously switched, thus not compared with [0, 1] during the preprocessing
phase. Since c is canonical, arcs may only be switched to their left in one of four
possible configurations as on Figure 76 and we infer that α must lie to the right
of [0, 1] as justified by Lemma 3.11.4 below. In conclusion, each comparison costs
O(log `) time so that α can be inserted in its search tree in O(log2 `) time.

Note that after α is inserted we do not try to determine if the current immersion
has a crossing or not. This will be checked in a second step after the unzip algorithm
is completed.

Lemma 3.11.4. Let c̃ and d̃ be two lifts of a primitive canonical geodesic in the
Poincaré disk D. The limit points of c̃ cut the boundary circle ∂D into two pieces.
By the right piece, we mean the piece of ∂D that bounds the part of D \ c̃ to the
right of c. Suppose that c̃ contains an arc a and that d̃ contains an arc b such that
a and b are in one of the four relative positions depicted on Figure 77. Then one of
the limit points of d̃ is in the right piece of ∂D.

Proof. We first note that b itself lies to the right of c̃. Indeed, c̃ would have to use a
1̄ turn to see b on its left or to pass along b, in contradiction with its canonicity. If
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both limit points of d̃ were to the left of c̃, then c̃ and d̃ would form a bigon with one
staircase part containing b. The c̃ side of this staircase would thus see b on its right,
which is impossible since c̃ is canonical (here, we have not used that d̃ is canonical
but only geodesic).

Proposition 3.11.5. If i(c) = 0 the unzip algorithm returns an embedding of a
geodesic homotopic to c.

Proof. Let I be the immersion computed by the unzip algorithm. We denote by ck
the geodesic homotopic to c resulting from the first switches in the algorithm up to the

insertion of the arc occurrence [k, k+1]. Note that k > r implies ck[0
r+1→ ] = cr[0

r+1→ ].
Suppose that I has a crossing. For the rest of this proof, we denote by i the smallest
index such that the insertion of [i, i+ 1] creates a crossing, i.e. the restriction of I to

[0
i+1→] has a crossing double point while its restriction to [0

i→] is an embedding. By
convention we set i = ` if the crossing appeared after the last arc insertion. We shall
show that c`−1 has two lifts whose limit points are alternating on the boundary of
the Poincaré disk. It will follow from Section 4.3 that i(c) = i(c`−1) > 0 thus proving
the Proposition. We first establish some preparatory claims.

Claim 1. If (i, j) is a crossing of I with 0 < j < i, then the backward arc ci[j, j− 1]
and the forward arc ci[j, j + 1] are distinct from the supporting arc ci[i, i + 1] of
[i, i+ 1]. Moreover, if [i, i+ 1] was switched just before its insertion, then ci[j, j − 1]
and ci[j, j + 1] are also distinct from the supporting arc ci−1[i, i+ 1] of [i, i+ 1] just
before its switch.

Proof. The first part of the claim follows directly from our insertion procedure and

the fact that the restriction of I to [0
i→] is an embedding. Moreover, assume that

[i, i+1] was switched just before its insertion. By the insertion procedure, this means
that the insertion of [i, i + 1] before the switch would have induced a crossing (i, k)
where 0 < k < i and ci−1[k, k + 1], ci−1[k, k − 1] 6= ci−1[i, i + 1] by the first part of
the claim. By the same first part we have ci[j, j − 1], ci[j, j + 1] 6= ci[i, i + 1]. Since

the restriction of I to ci[0
i→] has no crossing, the length 2 path ci−1[k − 1

2→] =

ci[k − 1
2→] separates ci[j − 1

2→] from ci−1[i, i+ 1], implying ci[j, j− 1], ci[j, j+ 1] 6=
ci−1[i, i+ 1] as desired.

Claim 2. If ci has a 1̄ turn at index k + 1, with 0 < k < i, then there is an index r
with 0 < r < k such that

• ck[k, k + 1] = ck[r, r − 1],
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• the arc ci[r, r − 1] lies to the right of ci[k, k + 1],

• ck[r, r − 1] 6= ck−1[k, k + 1].

Proof. A 1̄ turn can only occur at the destination of an arc that has been switched
and such that the next arc was not switched (otherwise, we would get a 2̄ turn).
If ci has a 1̄ turn at k + 1 then so has ck since the algorithm never backtracks. It
follows that the arc ck[k, k + 1] must have been switched just before its insertion,
thus witnessing the existence of an arc a of the form ck[u, u− 1] or ck[u, u+ 1], with
0 < u < k, that lies parallel to and to the right of ck[k, k + 1] (with respect to I).
Moreover, according to Claim 1 we can also assume ck[u, u − 1] and ck[u, u + 1] to
be distinct from the supporting arc of [k, k + 1] just before it was switched, namely
ck−1[k, k+1]. In the case a = ck[u, u−1], we may set r = u and conclude. Otherwise,

a = ck[u, u + 1] and, recalling that the restriction of I to [0
k+1→ ] has no crossing, it

must be that ck[u
2→] also lies parallel to and to the right of ck[k

2→]. So ci has a 1̄
turn at index u + 1, and we are back to the hypothesis of the claim, decreasing the
value of k to u. We can repeat the same arguments inductively, each time decreasing
the value of k in the claim. Since k > 1, the process must stop, implying that we
have reached the former case.

Recall that i is the smallest index such that the restriction of I to [0
i+1→] has

a crossing. We denote by c′ = c`−1 the geodesic homotopic to c resulting from all
the switches in the course of the algorithm execution. Let (i, j) be a crossing of I
with 0 < j < i. We consider two lifts d̃i and d̃j of c′ in the Poincaré disk such that
d̃i(i) = d̃j(j). We first suppose i < `.

Claim 3. We can choose j so that d̃i[i
+∞→ ] has no crossing with d̃j. (Crossings are

defined with respect to the lift of I in the Poincaré disk.)

Proof. Fix any j such that (i, j) is a crossing of I (0 < j < i) and suppose that

d̃i[i
+∞→ ] and d̃j cross. Let s be the smallest positive integer such that d̃i and d̃j

crosses at d̃i(i + s). We thus have a bigon of the form ([i
s→], [j

εs→]) for some
ε ∈ {−1, 1}. Moreover, this bigon has no intermediate crossings by the choice of
s. Let ∆ be a disk diagram for this bigon, oriented consistently with the system
of quads. ∆ must start with a staircase part by Claim 1. In particular, the turn t
between c′[j, j + ε] and c′[i, i+ 1] should be ±1. The unzip algorithm may have run
across four possible situations at step i.

1. Either [i, i+ 1] was switchable just before its insertion but was not switched,
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2. or it was switchable and switched,

3. or it was not switchable because of an inappropriate turn sequence,

4. or it was not switchable because the part to be switched contains [0, 1].

In the first situation, we know by Remark 3.11.1 that c′(i) is followed by a turn
sequence of the form 2∗1. Hence, t is exactly 1; but this contradicts the fact that
[i, i+ 1] was not switched though switchable. The third situation together with Re-
mark 3.11.1 also lead to a contradiction as the inappropriate turn sequence prevents
c[i

s→] from being part of any staircase. Thanks to Claim 1, the second situation
equally prevents c[i

s→] from being part of any staircase. It remains to consider the
fourth situation. We first suppose ε = −1, i.e. that the diagram ∆ corresponds to

the bigon ([i
s→], [j

−s→]). By Lemma 3.10.7, we have s < ` and the fourth situa-
tion implies that the [i

s→] side of the bigon contains [0, 1]. These two properties

imply that 0 < i + s − ` < i. It ensues that the [j
−s→] side contains index i, for

otherwise (i + s, j − s) would be a crossing occurring before step i. However, the
occurrence of i on both sides of the bigon contradicts Lemma 3.10.5. Hence, it must
be that ε = 1, i.e. that ∆ is bounded by two forward paths. Since the [i

s→] side
of ∆ contains [0, 1] and since i 6= `, it ensues from Remark 3.11.2 that I has a 1̄
turn at index j + 1. Claim 2 ensures the existence of a smaller index r such that
cj[j, j + 1] = cj[r, r− 1] and cj[r, r− 1] 6= cj−1[j, j + 1]. Since cj[j, j + 1] makes a one
turn with both cj−1[j, j + 1] and c′[i, i+ 1], these last arcs are equal and, since (j, r)
is not a crossing, (i, r) must be a crossing of I. We replace j by r to obtain another
lift d̃r that crosses d̃i at the same point d̃i(i) = d̃r(r) with the additional property
that d̃r[r, r − 1] and d̃i[i, i+ 1] make a one turn. We finally observe that d̃r satisfies
the claimed property. Indeed, the first staircase of ∆ must lie to the left of its [i

s→]
side by Remark 3.11.2, hence the other side of ∆ must start with [r, r − 1]. This is

however impossible by the preceding argument for ε = −1. It follows that d̃i[i
+∞→ ]

and d̃r have no crossing.

We next consider the smallest positive integer r such that d̃i and d̃j crosses at
d̃i(i − r). If no such r exists, then by the above Claim 3, d̃j and d̃i have a unique
intersection point and we may conclude that their limit points alternate. We can thus
assume the existence of a bigon ([i− r r→], [j − εr εr→]) with r > 0 and ε ∈ {−1, 1},
and without intermediate crossings. We first examine the case ε = −1 where the

bigon ([i− r r→], [j + r
−r→]) has oppositely oriented index paths. We must have

r ≥ i − j for otherwise the tip (i − r, j + r) of the bigon would define a crossing
occurring before step i, contradicting the choice of i. Hence, [i− r r→] contains
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j. This is however impossible by Lemma 3.10.5. We now look at the case of two
forwards index paths (ε = 1). We must have r ≥ j for otherwise the tip (i− r, j− r)
of the bigon would define a crossing occurring before step i, again contradicting the
choice of i. It follows that [j − r r→] contains [0, 1] and that the forward branches

d̃j[i− j
+∞→ ] and d̃i[0

+∞→ ] have a unique intersection point. The bigon labels a disk
diagram ∆ composed of paths and staircases as described in Theorem 3.4.2.

• If [0, 1] and α := [i−j, i−j+1] label the same arc of a path part in ∆ there are
two possibilities: either it holds initially that c[0, 1] = c(α) or α was switched in
the course of the algorithm. In the former case, we know by the preprocessing
phase and Lemma 3.10.8 that the left-to-right order of [0, 1] and α is coherent
with its extension in the backward direction. This implies that ultimately in
the backward direction d̃i lies on the same side of d̃j as does α. In the latter
case, as described in the end of the proof of Lemma 3.11.3, we know by the
insertion procedure that at least one of the limit points of d̃i lies on the same
side of d̃j as does α. Since (i, j) is the only crossing in the forward direction,
we conclude in both cases that d̃j and d̃i have alternating limit points.

• Otherwise, [0, 1] and α label two distinct arcs, say c0 and ai−j, of a staircase
part σ of ∆. Let [i−v, i−u] and [j−v, j−u], 0 ≤ u < v ≤ r be the index paths
corresponding to the sides σL and σR of σ. By Remark 3.11.2, [j − u, j − v]
must label the right side σR while [i− v, i− u] cannot contain [0, 1]. It follows
that v < i, whence [i − v, i − u] ⊂ [1, i]. If ai−j belongs to a horizontal part
of σL, the first vertex in this part has a 1̄ turn and we let m be the index of
this vertex. Otherwise, ai−j belongs to a vertical part whose last vertex has a
1̄ turn. It follows that the vertex of index i− j+ 1 had a 1̄ turn at step i− j of
the algorithm and we set m = i− j+ 1. By Claim 2, there is an arc occurrence
[x, x− 1], with x < m− 2, that lies to the right of ai−j and such that the turn
at x + 1 is not one. We view ∆ as a subset of the Poincaré disk so that ∆L

and ∆R can be seen as portions of d̃i and d̃j respectively. Let q̃ be the lift of c′

that extends the above occurrence [x, x−1] in D. See Figure 78. We denote by

q+ := q̃[x
+∞→ ] and q− := q̃[x

−∞→ ] the portion of q̃ respectively after and before
its vertex with index x.

We claim that q+ cannot cross d̃i. Otherwise, we would get a pair of homotopic
paths, one piece of q+ starting at index x and one piece of d̃i ending at index m,
with opposite orientations. By Lemma 3.10.5, the q+ piece would not contain
index m and would thus have length at most m− x < m. In turn, this would
imply that the d̃i piece would only contain vertices with indices in [1,m]. The
crossing of q+ and d̃i would thus occur before step i, a contradiction.
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Figure 78: ai−j may belong to a horizontal (left figure) or vertical (right figure) part
of σL.

a0

ai−j
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j∆

q+
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d̃j

d̃i

q̃

Figure 79: q+ cannot cross d̃i, q− cannot cross d̃j, and d̃j cannot cross d̃i[i
+∞→ ].

We next claim that q− cannot cross d̃j. To see this, first note that the index
path corresponding to the part of q− inside ∆ must contain 0. Indeed, q− must
cross ∆L or the part of ∆R after c0 and, in any case, the index along q− of
the corresponding crossing should be at least i, since no crossing occurs before
step i.

It follows from the above claims that q̃ and d̃i have alternating limit points.
See Figure 79.

It remains to consider the case i = ` where the first crossing appears after the
last arc insertion. Since all the arcs have been inserted without introducing crossings
it means that the crossings of the computed immersion I must have the form (0, j).
We first claim that each bigon of I must have its two sides oriented the same way.
Otherwise, the tips of the bigon must have the form (0, j) and (j, 0) for some index

j 6= 0, implying that c`[0
±j→] is contractible. This would contradict Corollary 3.4.4.

Let d̃` and d̃j be two intersecting lifts of c′ in the Poincaré disk. If d̃` and d̃j intersect
only once, then we are done as they must have alternating limit points. We now
suppose that d̃` and d̃j intersect at least twice and we consider the bigon ∆ between
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their last two intersections in the forward direction. By Lemma 3.10.7, the length

of ∆ is smaller than `. Let (0, j) and (` − j, 0) be the tips of ∆, so that d̃`[0
j→] ∼

d̃j[`− j
j→].

• If [0, 1] and α = [` − j, ` − j + 1] label the same arc d̃`[0, 1] = d̃j(α) then, by
the insertion procedure, one of the limit points of d̃` is on the same side of d̃j
as does α. The same argument as in the general case i < ` allows to conclude
that d̃` and d̃j have alternating limit points.

• We finally suppose that [0, 1] and α label distinct arcs, say c0 and a`−j, of a
staircase part σ of ∆. As in the general case i < `, c0 must see σ on its left,
while a`−j must see σ on its right. Hence, the d̃j side of σ is canonical while
the side along d̃` is not and must have been switched. By Claim 2, there is an
arc occurrence β to the right of d̃`[`− j, `− j+1] with the opposite orientation.
Let q̃ be the lift of c′ that extends β. As in the general case i < `, we can show
that the part of q̃ after β cannot cross d̃`, while the part before β cannot cross
d̃j. Using that (0, j) is the last crossing along d̃` and d̃j, we equally conclude
that d̃` and q̃ have alternating limit points. See Figure 79 with i = `.

Proof of Theorem 3.1.3. Let c be a combinatorial curve of length ` on a combina-
torial surface of size n. We compute its canonical form in O(n + `) time and check
in linear time that c is primitive. In the negative, we conclude that either c is con-
tractible, hence reduced to a vertex, or that c has no embedding by Proposition 3.8.2.
In the affirmative, we apply the unzip algorithm to compute an immersion I of some
geodesic c′ homotopic to c. According to Proposition 3.11.5, we have i(c) = 0 if and
only if I has no crossings. This is easily verified in O(n + `) time by checking for
each vertex v of the system of quads that the set of paired arc occurrences with v as
middle vertex form a well-parenthesized sequence with respect to the local ordering
≺v induced by I. We conclude the proof thanks to Lemma 3.11.3.

A related problem was tackled by Chang et al. [Chang et al., 2015, Th. 8.2] who
try to find an embedding of a given closed path on a combinatorial surface. In their
formulation, though, the path is not authorized to be modified. In our terminology,
they only look for the existence of a combinatorial immersion without crossings.
They suggest a linear time complexity for this problem and it seems likely that we
could also eliminate the log2 ` factor in our complexity.
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3.12 Concluding Remarks

The existence of a singular bigon claimed in Theorem 3.9.3 relies on Theorem 4.2
of Hass and Scott [Hass and Scott, 1985]. As noted by the authors themselves this
result is “surprisingly difficult to prove”. Except for this result and the recourse to
some hyperbolic geometry in the general strategy of Section 4.3 our combinatorial
framework allows to provide simple algorithms and to give simple proofs of results
whose known demonstrations are rather involved. Concerning Proposition 3.9.1, the
existence of an immersion without bigon could be achieved in our combinatorial
viewpoint by showing that if an immersion has bigons, then one of them can be
swapped to reduce the number of crossings. (The example in Figure 56 shows that
such a bigon need not be singular.) What is more, if those swappable bigons could
be found easily this would provide an algorithm to compute a minimally crossing
immersion of two curves by iteratively swapping bigons as in Section 3.9 for the
case of a single curve. However, we were unable to show the existence or even an
appropriate definition of a swappable bigon. Note that in the analogous approaches
using Reidemeister-like moves by de Graff and Schrijver [de Graaf and Schrijver,
1997] or by Paterson [Paterson, 2002], the number of moves required to reach a
minimal configuration is unknown. Comparatively, the number of bigon swapping
would be just half the excess crossing of a given immersion.

Although the geometric intersection number of a combinatorial curve of length
` may be Ω(`2), it is not clear that the complexity in Theorem 3.1.1 is optimal.
In particular, it would be interesting to see if the unzip algorithm of Section 3.11
yields minimally crossing curves even with curves that are not homotopic to simple
curves, thus improving Theorem 3.1.2. This would lead to an algorithm that is faster
to find an immersion with the minimal number of crossings than to actually count
them! It is also tempting to check whether the unzip algorithm applies to compute
the geometric intersection number of two curves rather than a single curve. Another
intriguing question related to the computation of minimally crossing immersions
comes from the fact that they are not unique. Given a combinatorial immersion we
can construct a continuous realization as described in the proof of Lemma 3.3.1. Say
that two realizations are in the same configuration if there is an ambient isotopy
of the surface where they live that brings one realization to the other. It was shown
by Neumann-Coto [Neumann-Coto, 2001] that every minimally crossing immersion
is in the configuration of shortest geodesics for some Riemaniann metric µ, but Hass
and Scott [Hass and Scott, 1999] gave counterexamples to the fact that we could
always choose µ to be hyperbolic.
Is there an algorithm to construct or detect combinatorial immersions that have a
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realization in the configuration of geodesics for some hyperbolic metric?



Chapter 4

Barnette’s Conjecture

4.1 Introduction

A splitting cycle on a topological surface Σ is a simple closed curve that cuts the
surface into two non-trivial pieces, none of which is homeomorphic to a disk. Refer
to Fig. 80. One can easily see that the genus of Σ is split into two numbers summing
to the genus of Σ. A torus does not have any splitting cycle. By the classification of
surfaces any closed surface (orientable or not) of genus at least two admits a splitting
cycle. Given a combinatorial surface homeomorphic to Σ it is natural to ask whether
G contains a cycle whose image in Σ is a splitting cycle. Here, a cycle in a graph
is a closed walk without any repeated vertex. This is the key point. To ask for
simplicity in a combinatorial map is strongly different than its continuous analogue
since it is obviously relative to the map and not only the underlying surface. We thus
remark that the fact of being simple has a very different sense speaking of surfaces
or combinatorial maps. This must be taken in consideration for any tentative of
translation of a continuous problem in a discrete setting. It is known to be NP-hard

C1

C3

C2

Figure 80: A cycle may be null-homotopic (C1) or separating but non null-homotopic
(C2) or neither null-homotopic nor separating (C3). C2 is also called a splitting cycle.

129
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to decide whether a combinatorial surface contains a splitting cycle or not [Cabello
et al., 2011; Chambers et al., 2006]. However, it was conjectured by Barnette that

Conjecture 4.1.1 (Barnette ’1982 [Mohar and Thomassen, 2001, p. 166]). Every
triangulation of a surface of genus at least 2 has a splitting cycle.

Two splitting cycles on a topological surface have the same type if there exists
a self-homeomorphism of the surface that maps one cycle to the other one. On an
orientable surface of genus g there are bg/2c possible types corresponding to splittings
into components of respective genus k and g− k, 1 ≤ k ≤ g/2. This type is denoted
by (k, g− k) or simply by min(k, g− k) when the genus is clear from the context. A
stronger version of the above conjecture was later proposed.

Conjecture 4.1.2 ([Mohar and Thomassen, 2001, p. 167]). Every triangulation of
an orientable surface of genus at least 2 has a splitting cycle of every possible type.

We prove that Conjecture 4.1.1 holds for the embeddings of the complete graphs
Kn described by Ringel and Youngs [Ringel, 1974] or by Gross and Tucker [Gross
and Tucker, 1987] when n ≡ 7 modulo 12. We next present counter-examples to
Conjecture 4.1.2 that also disprove a stronger conjecture of Zha and Zhao [Zha
and Zhao, 1993]. Let M19 be one of the embeddings of K19, the complete graph
on 19 vertices, given by Lawrencenko et al. [Lawrencenko et al., 1994]. From the
Euler characteristic it is easily seen that M19 is a triangulation of genus 20. Indeed
χ(M19) = 19 − 19 × 18/2 + 2/3 × 19 × 18/2 because its number of edges is clearly
19 ∗ 18/2 and any triangulation verifies 2e = 3f , so χ(M19) = 19 − 1/3 ∗ 19 ∗ 9 =
−38 = 2− 2 ∗ 20 and so g = 20. A brute force approach to test if any of the cycles
of K19 is splitting in M19 would lead to years of computations. Thanks to a simple
branch and cut heuristic I was able to check on a computer that Conjecture 4.1.2 fails
for M19. Only 4 of the 10 possible types occur and, in particular, it is not possible
to split M19 into two pieces of equal genus. We first describe the previous work on
the subject before discussing our new results.

4.2 State of the Art

4.2.1 Splitting Cycles on Triangulations

If T ′ is obtained from a triangulation T by an edge contraction, then every splitting
cycle in T ′ is the contraction of at least one splitting cycle of the same type in T . See
Figure 81. It follows that Conjectures 4.1.1 and 4.1.2 can be equivalently restricted to
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e

T T'

Figure 81: The contraction of edge e in T and the resulting triangulation T ′. Every
simple path on T ′ is the contraction of (at least) a simple path on T .

irreducible triangulations. On the other hand, Barnette and Edelson [Barnette and
Edelson, 1988; Barnette and Edelson, 1989] proved that the number of irreducible
triangulations of a given surface is finite. Nakamoto and Ota [Nakamoto and Ota,
1995] further showed that the number of vertices in an irreducible triangulation is at
most linear in the genus of the surface. (This result has been extended to surfaces
with boundaries by Boulch et al. [Boulch et al., 2013]. The best upper bound known
to date is due to Joret and Wood [Joret and Wood, 2010] who proved that this number
is at most max{13g−4, 4}.) In theory, one can thus list all irreducible triangulations
with fixed genus. This makes conjectures 4.1.1 and 4.1.2 decidable for fixed genus.
Indeed, we can consider every irreducible triangulation in turn to test whether one
of its cycles is splitting and compute its type as the case may be. Sulanke [Sulanke,
2006a] describes an algorithm for generating all the irreducible triangulations with
given genus and was able to list the irreducible triangulations of the orientable surface
of genus 2 and of the non-orientable surfaces up to genus 4. According to Sulanke
there are already 396784 irreducible triangulations of the orientable surface of genus
2 and 6297982 irreducible triangulations of the non-orientable surface of genus 4.
In practice, the number of irreducible triangulations is growing too fast and the
technique cannot be used for higher genera. Thanks to its enumeration Sulanke
could conclude by brute force computation that Conjecture 4.1.1 is true for the
orientable surface of genus 2 [Sulanke, 2006b]. A formal and highly technical proof
seems to have appeared in Jennings’ thesis [Jennings, 2003]. Sulanke [Sulanke, 2006b]
also gives a simple counter-example to an extension of Conjecture 4.1.2 to the non-
orientable case of genus 3. It is constructed from a triangulation of a torus and a
triangulation of a projective plane. Remove a triangle from each of those surfaces
and glue them along their boundary. Let C be the joining cycle in the resulting non-
orientable triangulation of genus 3. This surface cannot be cut by any cycle into a
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perforated Klein bottle and a projective plane since the cycle would have to cross the
length three cycle C at least four times. A similar argument holds when reversing the
roles of the torus and the Klein bottle, that is gluing a Klein bottle with a projective
plane. To our knowledge, no progress has been made on conjectures 4.1.1 and 4.1.2
since then.

4.2.2 Splitting Cycles on Maps with Large Face-Width

The splitting cycle Conjectures for triangulations have their counterpart for maps
with face-width 3:

Conjecture 4.2.1 ([Zha and Zhao, 1993]). Every map of genus at least 2 and face-
width at least 3 has a splitting cycle.

Conjecture 4.2.2 ([Mohar and Thomassen, 2001]). Every map of genus at least 2
and face-width at least 3 has splitting cycles of every possible type.

Since a triangulation has no loop or multiple edge, its face-width is at least 3.
The above conjectures are thus stronger than conjectures 4.1.1 and 4.1.2 respectively.
It was proved by Zha and Zhao [Zha and Zhao, 1993] that a map of genus ≥ 2 with
face-width at least 6 in the orientable case and at least 5 in the non-orientable case
has a splitting cycle. Each of their constructions leads to splitting cycles of type 1,
which seems to be the most occurring type. For maps of genus 2, those conditions
were lowered to face-width 4 in the orientable case [Ellingham and Zha, 2003] and
face-width 3 otherwise [Robertson and Thomas, 1991]. This last case is somehow
buried in a paper related to the computation of the genus of a graph. The proof
involves Menger’s theorem and is quite different from the other approaches on the
subject. So we describe it in our vocabulary and in a ad-hoc way.

Theorem 4.2.3 ([Robertson and Thomas, 1991]). Every non-orientable map of
genus 2 and face-width at least 3 has a splitting cycle.

In fact, the condition on the face-width can be lowered to the condition that
any closed curve homotopic to some fixed non-separating two-sided simple loop `
intersects the graph of the map at least three times.

Proof. Consider a map as in the theorem and let Σ be the Klein bottle on which its
graph is embedded. With a little abuse of notations we write G for the graph as well
as its embedding. Choose ` as above on Σ that further minimizes the number k ≥ 3 of
intersections with G. After cutting along ` we get an annulus bounded by two copies
`′ and `′′ of ` with opposite orientations. See Figure 82. The graph G is also cut by `,
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Figure 82: Left, a Klein bottle with a non-separating two-sided curve ` and a splitting
cycle α. Middle, the annulus after cutting along `. Right, The two paths in the
annulus merge to a splitting cycle α on the Klein bottle.

yielding a graph G′ with k vertices v′1, . . . , v
′
k in cyclic order along `′ that correspond

to k other vertices v′′1 , . . . , v
′′
k on `′′. By the minimal property of `, every closed curve

in the annulus separating `′ from `′′ cuts G′ at least k times. By Menger’s theorem
it easily follows that G′ contains k vertex disjoint paths connecting v′i to v′′σ(k+1−i)
(i = 1 . . . k) for some circular shift σ of [1, k]. The permutation i 7→ σ(k + 1 − i) is
an involution that cannot be the identity as k ≥ 3. Any of its 2-cycle (i, j) provides
a splitting cycle by merging the path from v′i to v′′j and the path from v′j to v′′i . See
Figure 82.

4.3 Experimental Approach

In order to get more insight on the conjecture we start with some simple examples.
This is not easily done by freehand drawing. Since every cycle in a torus is either
contractible or non-separating, the simplest surface to consider is the genus 2 surface.
Freehand drawing of combinatorial maps of genus 2 is rather tricky especially for
maps of small face-width as required by Zha and Zhao’s result [Zha and Zhao, 1993].
Looking at such drawings for splitting cycles is even more intricate so that we can
hardly get any intuition on the problem. An implementation on a computer can thus
be helpful in order to test the conjecture even against small examples. In practice I
chose to implement the flag data-structure described in Section 2.2.3 in C++. The
running time tables described below were obtained on a quad core laptop with 8Gb
RAM. Implementation is available at http://vdespre.free.fr/VincentDESPRE.

html.

http://vdespre.free.fr/VincentDESPRE.html
http://vdespre.free.fr/VincentDESPRE.html
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4.3.1 First Exploration

As noted in the state of the art it is sufficient to test the conjecture against every
irreducible triangulation of a fixed genus for proving the conjecture for all triangu-
lations of the corresponding genus. Sulanke has computed the full list of irreducible
triangulations of genus 2. There are approximately 400 000 of them. For each of
them he found at least one splitting cycle and computed the length of the shortest
one. Those results are shown in the next table. The irreducible triangulations of
genus 2 have between 10 and 17 vertices. The entry in row i and column j stores
the number of maps with i vertices whose shortest splitting cycle has length j. For
instance we see on the first row that 681 irreducible triangulations of genus 2 with 10
vertices have their shortest splitting cycle of length 6. The entries of the last column
give the average length of a minimum splitting cycle over all the maps considered in
their row.

• 3 4 5 6 7 8 Average

10 2 51 681 130 1 6.09
11 2 58 2249 16138 7818 11 6.21
12 25 1516 20507 72001 22877 121 6.00
13 710 13004 50814 78059 16609 9 5.61
14 8130 30555 12308 3328 205 1 4.21
15 36794 1395 3 1 2 3.04
16 661 3 3.01
17 5 3.00

My implementation leads to the exact same results. Looking at the previous table
we realize that triangulations with few vertices have longer shortest splitting cycles
than those with more vertices. This made us doubting of the correctness of the
conjecture and we decided to try to look at bigger triangulations of higher genus.
In order to see if my intuition was correct I first tried all the 59 non isomorphic
triangulations of K12 on S6. In all maps I found a splitting cycle. I thus decided
to look for the type of the splitting. This study highlighted the fact that it is more
difficult (meaning needs longer cycles) to split into pieces of genera 3 and 3 than 1
and 5. The algorithm stores for each map the length of the shortest splitting cycle
of each type. The average on that value and the worst cases on the set of the 59
non-isomorphic embeddings of K12 are shown on the next table.

Type (1, 5) (2, 4) (3, 3)
Average 7.58 9.41 10.32

Worst case 8 10 12
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For instance there is an embedding of K12 whose only splitting cycle of balanced
type is a Hamiltonian cycle. It suggests that complete graph may not all have that
kind of splitting cycle. We then decided to study complete graphs of higher genus to
see if that phenomenon is confirmed.

4.3.2 Complete Graphs

Details on embeddings of complete graphs can be found in the next section. By trying
to find explicit constructions of complete triangulations we found that Ellingham
and Stephens [Ellingham and Stephens, 2005] had proposed as an application of
their work the test of the conjectures about splitting cycles. In fact, it is not easy
in practice to search for splitting cycles. There is not efficient algorithm for general
maps (which is excepted since the problem is NP-complete). Thus the only algorithm
we know consists in testing every cycles of the entry map. The number of cycles of
a graph with n vertices is

∑n
k=3

1
2

(
n
k

)
(k− 1)! which is morally growing like n!. Using

that basic exhaustive search algorithm we obtain the following time of computation
for complete graphs with Ringel and Youngs embeddings. The last row shows the
final computation time obtained after designing our final algorithm.

n 12 15 16 19 31 43
basic 2 s. 1 h. 12 h.
final 5 s. 6 s. 6 s. 10 sec. 15 m. 4 h.

The growth of computation times of the naive algorithm is similar to n!. We got a
theoretical computation time of approximately 10 years for n = 19. Let us see the
result we obtain for K15 and K16. Recall that the the embeddings considered are
those of Ringel and Youngs. K15 triangulates S11 and K16, S13. For instance, the
embedding of K15 we consider has a shortest splitting cycle of type (3, 8) of length
12.

Type (1, ·) (2, ·) (3, ·) (4, ·) (5, ·) (6, ·)
K15 8 11 12 13 14
K16 8 10 12 14 14 15

Again, it appears that the more balanced is the type, the more vertices are required
to build a splitting cycle of the corresponding type. Considering larger n may just
lead to something interesting. Note that this is correlated with the following lemma:

Lemma 4.3.1. Let M be an embedding of a complete graph Kn on the surface of
genus g = (n−3)(n−4)

12
. Then a splitting cycle of type (

⌊
g
2

⌋
,
⌈
g
2

⌉
) has length at least⌈

5+
√

2n2−14n+25
2

⌉
.
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Proof. Since Kn is a complete graph, it is not possible that the two sides of a splitting
cycles have an interior vertex. Hence, after cutting along a splitting cycle, there is
a map with one boundary and no interior vertex of genus at least the smaller value
of the type. Let S be a splitting of type (

⌊
g
2

⌋
,
⌈
g
2

⌉
). Let k be the length of S

and M ′ be the map without interior vertices. M ′ has genus at least
⌊
g
2

⌋
and so

χ(M ′) ≤ 2− 2
⌊
g
2

⌋
− 1 ≤ 2− (g− 1)− 1 = 2− g. M ′ has k vertices, e ≤ k(k−1)

2
edges

and f faces. The double counting of the number of edges gives 3f = 2e− k because
all the edges are on exactly 2 faces except the k on the boundary. So χ(M ′) =

k − e+ 2 e
3
− k

3
= 2k−e

3
≥ 4k−k(k−1)

6
= 5k−k2

6
. By putting together the two inequalities

we obtain: 2−g ≥ 5k−k2
6

leading to k2−5k+6−6g ≥ 0. ∆ = 25−4(6−6g) = 1+24g

and so k ≥ 5+
√

1+24g
2

=
5+
√

1+2(n−3)(n−4)

2
= 5+

√
2n2−14n+25

2
.

For K15 and K19 this gives that a balanced splitting cycle has length at least
11 and 14 respectively. When n is big enough then a splitting cycle of balanced
type has length greater than

√
2

2
n and thus uses at least 70% of the vertices. It

suggests that balanced splittings are difficult to build and may not exits for n big
enough. In order to confirm that intuition it is needed to design a more efficient
algorithm in our particular setting. The description of the algorithm we used is
given in section 4.6. This algorithm is of critical importance in this study. Indeed
thanks to that efficiency we discovered a counter-example to conjecture 4.1.2 but
since it allows to go up to n = 43 easily it gives an intersecting view on the behavior
of splitting cycles in bigger triangulations (see section 4.7.2). Note that it is also
very efficient to find one splitting rather than an exhaustive search. We were able
to find a splitting cycle in K1207 for instance in a few minutes. This last calculus
made us realize that we can prove the existence of splitting cycles in Ringel and
Youngs embeddings by finding a feature in the output cycles we obtained for big n
(see section 4.5). Our implementation contains routine to create any embedding of
Kn of Ringel and Youngs or Gross and Tucker for n = 12s + 7 by choosing the s.
However, the other cases are made one by one.

Without the efficient algorithm it may also have been possible to find counter-
examples by testing other embeddings of K15 which was the limit size in terms of
time of computation. Uniform sampling is not known for embeddings of K15 (see
chapter 5) so the best option would have been to use an approach similar to Ellingham
and Stephens one.
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4.4 Embeddings of Complete Graphs

As noted in Section 4.2.1, one only needs to test conjectures 4.1.1 and 4.1.2 against
irreducible triangulations. Any triangulation whose graph is complete is irreducible.
On the other hand, Sulanke’s experimentation [Sulanke, 2006a] on irreducible genus
two triangulations suggests that denser graphs, i.e. triangulations with fewer vertices,
have longer — hence potentially fewer — splitting cycles. It is thus legitimate to
confront the conjectures with complete graphs.

4.4.1 Existence

The existence of embeddings of complete graphs as triangulations has appeared quite
early. It was a key point in the proof of Heawood’s conjecture:

Conjecture 4.4.1 ([Heawood, 1890]). Let Σ be a surface without boundary of char-
acteristic χ and different from the sphere. Lets define:

γ(χ) =

⌊
7 +
√

49− 24χ

2

⌋
Then any simple graph drawn on Σ can be colored using γ(χ) colors and this is tight.

The formula is not absolutely natural but it comes very easily from Euler for-
mula. Since it involves very common ideas it is interesting to develop it with modern
formulation. The main result of Heawood is in fact the following:

Proposition 4.4.2 ([Heawood, 1890]). Let Σ be a surface without boundary of char-
acteristic χ. Let G be a simple graph embedded on Σ. Then G has a vertex of degree
less than max(5, γ(χ)− 1).

Proof. Let k be the minimum degree of G. G has n vertices, e edges and f faces.
by the usual vertex-edge incidence double counting, e ≥ kn

2
. If G embeds as a

triangulation then 2e = 3f and in the general case 2e ≥ 3f since edges can be added
to obtain a triangulation. So f ≤ 2e

3
. We obtain χ = n− e+ f ≤ n− e+ 2e

3
= n− e

3
.

So χ ≤ n(1− k
6
). If k ≥ 6 then n(1− k

6
) is a decreasing function of n. So n ≥ k + 1

implies that χ ≤ k+ 1− k(k+1)
6

leading to k2− 5k+ 6χ− 6 ≤ 0. The discriminant of

the equation is ∆ = 25− 4(6χ− 6) = 49− 24χ. So k is an integer between 5−
√

49−24χ
2

and 5+
√

49−24χ
2

. Finally k ≤
⌊

5+
√

49−24χ
2

⌋
= γ(χ)− 1.
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Using this result we can prove the conjecture without the tightness. Indeed, it is
possible to iteratively remove vertices of degree less than γ(χ)− 1 and then coloring
them in reverse order. Unfortunately it is not interesting for the sphere since it is far
from giving the bound of 4. This part of the result has been generalized in higher
dimension as a conjecture by Kühnel [Kühnel, 1994]. Here, I do not pretend to make
a careful study of higher dimension problems but I give the definitions required to
understand the generalization. It uses the Betti numbers βi that are defined as
the dimension of the i-th homology group. For instance the β1 of a surface is the
dimension of its H1, which is 2g for an orientable surface without boundary. A
manifold is k connected if it is non-empty, arc-connected and such that its k first
homotopy groups πi are trivial. The πi are defined in a similar way as the fundamental
group of a surface except it involves higher dimensional objects (see [Hatcher, 2002]).
We can now state the conjecture.

Conjecture 4.4.3 ([Kühnel, 1994]). If the k-skeleton of a n-simplex embeds in a
compact, k − 1-connected 2k-manifold then:

(
n−k−1
k+1

)
≤
(

2k+1
k+1

)
βk.

The best result known so far on that conjecture is given by Goaoc et al. [Goaoc
et al., 2015]. They show that with the same assumptions but the connectedness, the
following inequality holds: n ≤ 2βk

(
2k+2
k

)
+ 2k + 5.

The tightness in conjecture 4.4.1 consists in constructing a γ(χ)-colorable graph
embedded on the corresponding surface that is not (γ(χ) − 1)-colorable. This has
been done by using complete graphs thus completing the proof of the conjecture for
all surfaces except the Klein bottle. All the details can be found in the book of Ringel
and Youngs [Ringel, 1974] (see also [Gross and Tucker, 1987, Sec. 5.1.5]). Note that
the case of the Klein bottle is quite strange and a one page technical proof is given
in that book. Here, we focus on the cases where those complete graphs embed as
triangulations. We first state some arithmetic restriction on the size of the complete
graph.

Lemma 4.4.4. If the complete graph on n vertices Kn embeds as a triangulation
then n ≡ 0, 3, 4 or 7 mod 12 for orientable surfaces and n 6≡ 2, 5 mod 6 otherwise.
In addition the genus of the triangulated surface is g = (n−3)(n−4)

12
in the orientable

case and g = (n−3)(n−4)
6

otherwise.

Proof. Let Kn be a complete graph that triangulates an orientable surface Σ of
genus g. It has n vertices, n(n− 1)/2 edges and 2/3 ∗ n(n− 1)/2 faces. So we have

χ(Σ) = n − n(n − 1)/2 + 2/3 ∗ n(n − 1)/2 = 6n−n(n−1)
6

= 7n−n2

6
= 2 − 2g so g =

n2−7n+12
12

= (n−3)(n−4)
12

. Since g is an integer, it implies that (n−3)(n−4) ≡ 0 mod 12
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leading to the announced cases. The non-orientable case is done similarly but with
χ(Σ) = 2− g.

All the work described in the proof of the map color theorem by Ringel and
Youngs consists in showing that in all the possible cases such a triangulation exists.
Indeed, since for such embeddings of Kn we get χ = 2− (n−3)(n−4)

6
then, the Heawood

bound gives γ(χ) = n, which is obviously the minimum number of colors required to
properly color Kn.

4.4.2 Non-Isomorphic Embeddings

Lawrencenko et al. [Lawrencenko et al., 1994] identify three triangular embeddings
of the complete graph K19 which they prove to be non-isomorphic with the help of a
computer (see [Korzhik and Voss, 2001] for a non-computer proof). Each occurs as
a covering of one of the orientable genus two base maps as shown Figure 83. Those
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Figure 83: Three genus two maps with voltages in Z19. (The arcs opposite to those
represented must receive opposite voltages.) For each octagon the sides should be
pairwise identified according to their voltages. This results in each case A, B, C
in a map with 9 edges and a single vertex. The corresponding coverings provide
triangular embeddings of the complete graph K19. Case A is from Ringel and Youngs
contruction and case B from Gross and Tucker [Gross and Tucker, 1987].

coverings are generated from assignments of the directed edges (or arcs) of each base
map to elements of Z19, the cyclic group of order 19. Two opposite arcs should
receive opposite assignments and the sum of the assignments along an oriented facial
cycle should be zero, whence the name of voltage given to such assignments [Gross
and Tucker, 1987, Ch. 2]. The three voltages in [Lawrencenko et al., 1994] happen
to be injective so that the arcs can be identified with their assignment. This leads
to the following simple description of each covering. Given one of the base maps
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with its voltage, we label the vertices of K19 with Z19 and declare (i, j, k) to be a
triangle if and only if the three arcs with respective assignments j − i, k − j and
i − k form a facial cycle in the base map. This construction can be generalized to
produce embeddings of K12s+7 for every positive integer s. Gross and Tucker [Gross
and Tucker, 1987] use the base map reproduced on Figure 84 as a 4(s+1)-gon whose
sides are pairwised identified according to their voltage. The resulting surface has
genus s+ 1 and is covered by a triangular embedding M12s+7 of K12s+7 whose genus
is 1 + s(12s + 7). As for M19, we may identify the vertices of K12s+7 with Z12s+7 so
that (i, j, k) is a triangle of M12s+7 if and only if j− i, k− j and i− k label the three
sides of a triangle on the left Figure 84.
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Figure 84: Left, a base map and its voltage for constructing the Gross and Tucker’s
embedding of K12s+7. Note that this base map has a single vertex and is not a
simplicial triangulation. Right, the 10 triangles form a sub-surface of genus one with
one boundary component in M12s+7. Each arc (u, v) is assigned the voltage v − u.
Hence, the arc (9s+ 8, 4) receives the voltage 3s+ 3 mod (12s+ 7). Some triangles
are colored to show the corresponding covered triangles in the base map.

Recent studies indicate that the number of non-isomorphic triangulations of a
surface by the same complete graph is actually quite high [Korzhik and Voss, 2001;
Ellingham and Stephens, 2005; Grannell and Knor, 2012; Grannell and Knor, 2010].
It is far from being exhaustive but it contains all the different main ideas. We
discuss those article in order to list the corresponding concepts. First, Korzhik and
Voss show that many non-isomorphic embeddings can be constructed in Ringel and
Youngs’ way. They find a way to ensure that some transformations of the voltages
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lead to non-isomorphic embeddings. This strategy only works for Kn with n ≡ 4
mod 12 and n ≡ 7 mod 12, which corresponds to the simplest cases of Ringel and
Youngs’ embeddings. When n = 12s+ 4 or n = 12s+ 7, they prove that there exists
at least 4s non-isomorphic triangular embeddings of Kn. Their construction is far
from giving all possible embeddings. For instance, it gives 4 different embeddings for
K19. Ellingham and Stephens provides a good idea of the number of non-isometric
embeddings. They construct a canonical representation of a triangulation in a similar
way that the one of Steiner Triple Systems. Steiner Triple System are of interest when
considering triangular embeddings. Given a set of basis elements a Steiner Triple
System is two sets of set of basis elements of size 2 and 3 such that each pair appears
in exactly one triplet. Then a biembedding of a triple system leads to an embedding
of the graph designed by the basis elements as vertices, the pairs as the edges and the
triplet as the triangles. It only allowed to described two face-colorable embeddings
(embeddings whose dual is bipartite). It is possible to use directly that kind of
systems but Ellingham and Stephens proposed a description more appropriate that
suits all embeddings and not 2-colorables. Then by brute-force they find 182, 200
non-isomorphic embedding of K12 on its corresponding non-orientable surface and
243, 088, 286 for K13. The choice of 12 and 13 is strictly fixed by computation time.
It is possible to handle smaller complete graphs directly (Altshuler, Bokowski and
Schuchert show that there are exactly 59 non-isomorphic orientable triangulations
of K12 [Altshuler et al., 1996]) and it becomes unreachable for bigger values. For
purely theoretical counting Grannell and Knor improve the numbers of Korzhik and
Voss by applying surgery tools and complete tripartite graph embeddings. Finally
Grannell and Knor obtain nan

2
embeddings for an infinite but restrictive family of

n and with a a constant. Remark that they also give an upper bound of nn
2/3 for

2-face colorable embbedings. This suggests that it is the actual value for all the cases
but nothing stronger seems to be known to date.

4.5 Many Splitting Cycles

Our implementation for searching splitting cycles lead us to discover that every tri-
angular embedding M12s+7 given by Ringel and Youngs has a splitting cycle of type
1. This confirms Conjecture 4.1.1 for those triangulations. Note that by gluing
irreducible triangulations along the boundary of a triangle we may obtain arbitrar-
ily large irreducible triangulations that all possess a splitting cycle. However, the
embeddings of complete graphs are not constructed this way and thus provide non-
trivial confirmations of Conjecture 4.1.1. For s ≥ 3, M12s+7 has indeed a splitting
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cycle of length 8 given by the circular sequence of vertices:

γs = (0, 5, 2, 9s+ 8, 6, 1, 4, 5s+ 6)

This cycle bounds a perforated torus made of ten triangles as pictured on the right
in Figure 85. On this figure the two copies of edge (2, 4) should be identified, as well
as the two copies of (0, 6).

By construction, adding the same integer to the label of each vertex leaves the
map unchanged. It provides a group action of Z12s+7 on the cycles of M12s+7. The
orbit of γs by this action provides us with 12s + 7 distinct splitting cycles of type
1. Viewing the base map on the left Figure 85 as a fan of 4s + 2 triangles, we can
decompose the ten triangles of the perforated torus into two sub-fans of length five
in the base map. See Figure 85, left. This construction can be generalized to exhibit
many splitting cycles of type 1 by shifting the two fans, leading to the perforated
tori as on Figure 85. Each of those cycles can be translated by the action of Z12s+7
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Figure 85: Left, the ten triangles of perforated torus in M12s+7 composed of two
sub-fans glued along an edge with even voltage 2i+ 2. Right, a similar construction
using a gluing edge with odd voltage.

to give the following 2(s− 1)(12s+ 7) distinct splitting cycles of type 1:

γs,i,k = k + (0, 2i+ 3, 2, 9s+ 7 + i, 2i+ 4, 1, 2i+ 2, 5s+ 5 + i)

γ′s,i,k = k + (0, 2i+ 2, 2, 5s+ 4 + i, 2i+ 3, 1, 2i+ 1, 9s+ 7 + i)

for i ∈ [1, s − 1] and k ∈ Z12s+7. We can further generalize the construction by
gluing larger fans of length 4j + 1 as on Figure 86 to obtain splitting cycles of type
j for j = 1 . . . d s−1

2
e. Hence, the embeddings M12s+7 constitute an infinite family of

irreducible triangulations that admit splitting cycles.
A similar construction applies to the embeddings of K12s+7 by Ringel and Youngs.
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Figure 86: A punctured surface of genus j in M12s+7. The thick edges should be
glued according to their voltage.

4.6 Testing Algorithm for Conjecture 4.1.2

Here we provide the details of our implementation for testing Conjecture 4.1.2 on any
triangular embedding Mn of the complete graph Kn (for a relevant n), not necessarily
the embedding given by Ringel and Youngs or by Gross an Tucker. A straightforward
approach consists in checking for every possible cycle in Kn whether it is splitting or
not in Mn and computing its type in the former case. This assumes that we can list
all the

∑n
k=3

1
2

(
n
k

)
(k − 1)! undirected cycles of Kn. For n = 19 this is already more

than 9× 1016 cycles to test, which is out of reach of current computers.

4.6.1 Pruning the Cycle Trees

Labelling the vertices of Kn with Zn, we identify a directed cycle with the sequence
of its vertex labels starting with the smallest label. The (directed) cycles can be
organized in n−2 rooted trees where the parent of a cycle is obtained by deleting its
last vertex. Before exploring those cycle trees, we make two simple observations.

Remark 4.6.1. If the automorphism group of Mn acts transitively on the set of its
vertices we only need to consider the tree of cycles through vertex 0.

Indeed, an automorphism of Mn does not change the type of a cycle. This remark
applies to the three embeddings of K19 by Lawrencenko et al. [Lawrencenko et al.,
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1994] and to all the orientable embeddings of K12s+7 by Ringel and Youngs and by
Gross and Tucker. In each case Z12s+7 acts transitively by addition on vertex labels.

Remark 4.6.2. We can assume that a splitting cycle does not contain two consec-
utive edges bounding a same triangle. We could otherwise replace the two edges by
the third one in the triangle.

This allows us to decrease by two the degree of the (non root) nodes in the
cycle trees. A much more efficient pruning of the cycle trees is provided with the
following simple heuristic. Suppose we are given a directed splitting cycle γ on Mn.
We view an edge as a pair of oppositely directed arcs. Color in red or blue all the
interior edges of the components of Mn \ γ respectively to the left or right of γ. The
resulting coloring satisfies that (i) every arc not in γ receives the same color as its
opposite and (ii) for every vertex, the set of arcs directed inward that vertex is either
monochromatic or composed of a red and a blue nonempty sequences separated by
two arcs of γ. This leads to the following coloring test. As we go down a cycle tree
from cycle (v0, . . . , vk) to (v0, . . . , vk, vk+1) we color the arcs pointing outward vk and
distinct from vkvk−1 and from vkvk+1 in red or blue according to whether they lie
to the left or right of the directed subpath1 (vk−1, vk, vk+1). Each time an arc vkv is
colored we check that

• vvk is either colored as vkv or has not been visited yet,

• the arc preceding vkv around v is not colored with the other color,

• the arc following vkv around v is not colored with the other color,

• if another arc uv has the same color as vkv, then all the arcs entering v with
the other color lie on the same side of the path (vk, v, u).

If any of these tests fails the current partial coloring cannot be extended to fulfill the
above conditions (i) and (ii). We can thus stop exploring the cycle subtree rooted
at (v0, . . . , vk+1). Together with remarks 4.6.1 and 4.6.2 those simple tests happens
to be very effective and to reduce drastically the number of cycles to consider. See
Section 4.7 for experimental results.

1In the non-orientable case, the left and right orientation should be propagated along the path
(v0, . . . , vk+1).



4.6. TESTING ALGORITHM 145

4.6.2 Computing the Type of a Cycle

When the cycle σ := (v0, . . . , vk+1) passes the above tests it remains to check if σ is
splitting and to compute its type. To this end we temporarily color the arcs pointing
outward v0 and the arcs pointing outward vk+1 in a way similar to that of the other
vi, i = 1, . . . , k. We also perform the above tests and reject the cycle if anyone fails.
At this point all the arcs outward the vertices of σ have been colored. We say that a
vertex of Kn−σ is partially monochromatic if all its colored inward arcs received
the same color.

Lemma 4.6.3. σ is separating if and only if all the vertices of Kn − σ are partially
monochromatic and all of the same color.

Proof. If σ is separating then one of the two components of Mn \ σ has no interior
vertex. Otherwise, there would be an interior vertex in each component. However,
those vertices would be connected by an edge of the (complete) graph of Mn leading
to a contradiction. The direct implication in the Lemma easily follows. For the
reverse implication, suppose that every vertex of Kn− σ is partially monochromatic
and that none of the arcs pointing to Kn − σ has color c for some c ∈ {blue, red}.
Then, every arc a with color c must connect two vertices of σ. The sides of the two
triangles of Mn incident to a are thus either in σ or have color c. It ensues that the
set of triangles of Mn each of whose sides is either in σ or colored with c forms a
subsurface of Mn whose boundary is σ, proving that σ is separating.

When Mn is orientable and σ is separating we can directly compute its type.
With the notations of the preceding proof this amounts to compute the genus g′

of the c-colored component of Mn \ σ. Denote by Ac the number of c-colored arcs
and let |σ| be the number of edges of σ. Using the Euler characteristic and double
counting of the edge-triangle incidences, we easily obtain g′ = (Ac − 2|σ| + 6)/12
when the c-colored component is orientable and g′ = (Ac − 2|σ|+ 6)/6 otherwise.

In practice, we maintain the following information for every vertex of v ∈ Mn:
whether it belongs to the current cycle, the number of incident blue edges, the number
of incident red edges, and a data-structure to store the colored arcs inward v. The
updating of this information as well as the color tests can be performed in O(log n)
time per newly colored edge using a simple data-structure that allows to find the next
or previous colored arc around v and to insert or remove an arc in O(log n) time.
Traversing the cycle trees in depth first order our algorithm thus spends O(n log n)
time per cycle in the cycle trees. When Mn is non-orientable we can compute the
Euler characteristic of the c-colored component in the same amount of time. If
the c-colored component is orientable the other component must be non-orientable
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and we are done. Otherwise we may need O(|Kn|) = O(n2) time to determine the
orientability of the other component.

4.7 Results

In this section we detail the results for testing our algorithm on embeddings of
complete graphs, leading to counter-examples to Conjectures 4.1.2 and 4.2.2. Re-
mark 4.6.1 applies to each of the tested embeddings so that we only need to explore
the cycle tree rooted at vertex 0.

4.7.1 Embeddings of K19

Our smallest counter-examples to Conjecture 4.1.2 are provided by the three embed-
dings of K19 described in Section 4.4. We refer to them as A,B and C in accordance
with Figure 83. A splitting cycle is said to have type k if it cuts the surface into
components of respective genus k and 20 − k. The next table shows for each em-
bedding and each type the number NSC of splitting cycles of that type found as we
traverse the cycle tree with root vertex 0 and the minimum length of any of those
NSC cycles. Note that this minimum length would be the same if we would not take
Remark 4.6.2 into account for pruning the cycle tree. For instance, we may note that
every splitting cycle of type 4 in embedding B is Hamiltonian.

Type 1 2 3 4 5-10

A
NSC 450 545 79 18 0

Min Length 11 14 16 18 ⊥

B
NSC 468 494 130 19 0

Min Length 10 14 18 19 ⊥

C
NSC 355 257 17 36 0

Min Length 11 15 17 18 ⊥

None of the three embeddings admits a splitting cycle of type 5 or more, thus disprov-
ing Conjecture 4.1.2. In particular, these embeddings cannot be split in a balanced
way into two punctured surfaces of genus 10. As a side remark, the fact that the
numbers in the table are distinct for the three embeddings is another confirmation
that they are not isomorphic [Lawrencenko et al., 1994]. The next table indicates the
proportion of contractible and splitting directed cycles among the visited nodes (that
passes the color tests of Section 4.6.1) in the cycle tree. Since every cycle appears
with both directions in the cycle tree, the number of splitting cycles is twice the sum
in the corresponding NSC row in the previous table.
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# visited nodes # contractible # splitting
A 250221 36 2164
B 244229 36 2222
C 210808 36 1330

Hence, thanks to our pruning heuristic, less than 3 × 105 of the 1.8 × 1017 directed
cycles of K19 are visited. We remark that by a Dehn type argument in the universal
cover of the triangulation (see [Stillwell, 1993, Sec. 6.1.3]) a contractible cycle that
does not contain two consecutive edges of any triangle must be the link (i.e. the
boundary of the star) of a vertex. Since every cycle in the cycle tree must contain
vertex 0 this leaves 18 link cycles as contractible cycles and explains the 36 found in
each row of the previous table.

4.7.2 More Counter-Examples

Table 1 summarizes our results for the Ringel and Youngs embeddings of Kn with
n ∈ {15, 16, 19, 27, 28, 31, 39, 40, 43}. Each entry in the table gives the length of the
smallest splitting cycle of a given type for some Kn, if any. The last row indicates
the largest possible type of a splitting cycle in the Ringel and Youngs embedding of
Kn. It took less than 10 seconds to explore the pruned cycle tree for K19, less than
one hour for K31 and about half a day for K43. We have also tested some of the
Gross and Tucker embeddings of K12s+7. Some results are listed in Table 2.

4.8 Conclusion

Our counter-examples to Conjecture 4.1.2 were checked with the help of a computer.
Can we give a formal proof that would not recourse to a computer (at least for M19)?
Although we could not find such a proof, three points seem relevant to this purpose.

• Suppose there is a splitting cycle of type 10 with k edges in M19. As noted in
the proof of Lemma 4.6.3, on one side of the cut surface we have no interior
vertex. Let f and e be the number of faces and edges on this side (the number
of vertices is k). By double counting incidences we have 3f = 2e − k, and by
Euler’s formula: k − e + f = 2 − 20 − 1 = −19. It ensues that e = 2k + 57.
Because the graph is simple we also have e ≤

(
k
2

)
. This implies k2−5k−114 > 0

and in turn 14 ≤ k ≤ 19. A similar computation shows that a splitting cycle of
type half the genus of M12s+7 has length at least (5 +

√
(1 + (24s+ 7)2)/2)/2.
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Type
Kn K15 K16 K19 K27 K28 K31 K39 K40 K43

1 8 10 11 12 12 8 12 10 8
2 11 12 14 16 17 13 15 15 11
3 12 14 16 19 18 15 20 18 12
4 13 16 18 20 ⊥ 17 24 19 15
5 14 16 ⊥ 27 ⊥ 20 26 24 18
6 16 ⊥ ⊥ ⊥ 21 30 26 20
7 ⊥ ⊥ ⊥ 23 32 28 21
8 ⊥ ⊥ ⊥ 24 ⊥ 30 23
9 ⊥ ⊥ ⊥ 28 ⊥ 33 24
10 ⊥ ⊥ ⊥ 28 ⊥ 35 25
11 ⊥ ⊥ 29 ⊥ 36 27
12 ⊥ ⊥ ⊥ ⊥ 38 29
13 ⊥ ⊥ ⊥ ⊥ 40 30
14 ⊥ ⊥ ⊥ ⊥ ⊥ 31
... ⊥ ⊥ ⊥ ⊥ ⊥ ...

29 ⊥ ⊥ ⊥ 42
30 ⊥ ⊥ ⊥ ⊥

max type 5 6 10 23 25 31 52 55 65

Table 1: Minimal size of splitting cycles of Ringel and Youngs embeddings according
to their type.

• Every splitting cycle leads to an arrangement of 12s+ 7 splitting cycles thanks
to the action of Z12s+7 on M12s+7. Is it possible to take advantage of this
arrangement to obtain an “impossible” dissection of M12s+7 when assuming
the existence of a splitting cycle of type bg(M12s+7)/2c?

• Finally, we saw in Section 4.5 that M12s+7 contains many short splitting cycles.
On the other hand, the first above point tells that a splitting cycle γ of type
half the genus is relatively long, hence must cut many of the short splitting
cycles. Being separating, γ has to cut every other cycle an even number of
times. Would this enforce γ to have length larger than 12s + 7, leading to a
contradiction?

Our counter-examples show that it is not always possible to split a genus g tri-
angulation into two genus g/2 triangulations. Looking at the tables in Section 4.7.2,
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Type
Kn K19 K31 K43

1 10 8 8
2 14 13 11
3 18 17 12
4 19 19 15
5 ⊥ 20 18
6 ⊥ 25 23
7 ⊥ 26 26
8 ⊥ 26 26
9 ⊥ ⊥ 28
10 ⊥ ⊥ 34
11 ⊥ 34
12 ⊥ 35
13 ⊥ 35
14 ⊥ ⊥

max 10 31 65

Table 2: Minimal size of splitting cycles of Gross and Tucker embeddings according
to their type.

it seems that the proportion of the types of the splitting cycles of M12s+7 is roughly
decreasing as s grows. This leads to the following conjecture in replacement of Con-
jecture 4.1.2.

Conjecture 4.8.1. For any positive real number α ≤ 1/2, there exists a triangulation
(or a graph embedding of face-width at least 3) of arbitrarily large genus g that has
no splitting cycle of type larger than αg.
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Chapter 5

Bijections for Toroidal
Triangulations

5.1 Introduction

In this chapter, we consider graphs embedded on a surface with no contractible
cycle of size 1 or 2 ,i.e. no contractible loop-edges and no multiple edges forming
a contractible cycle. Note that this is a assumption weaker than the graph being
simple. We denote by n the number of vertices, m the number of edges and f the
number of faces of a given map all along this chapter.

Poulalhon and Schaeffer introduced in [Poulalhon and Schaeffer, 2006] a method
(called here PS method for short) to linearly encode a planar triangulation with a
binary word of length log2

(
4n
n

)
∼ n log2(256

27
) ≈ 3.2451n bits. This is asymptotically

optimal since it matches the information theory lower bound. The method is the
following. Given a planar triangulation G and its minimal Schnyder wood of G,
a special depth-first search algorithm is applied by “following” ingoing edges and
“cutting” outgoing ones. The algorithm outputs a rooted spanning tree with exactly
two leaves (also called stems) on each vertex from which the original triangulation
can be recovered in a straightforward way. This tree can be encoded very efficiently.
Besides its interesting encoding properties, this method gives a bijection between
planar triangulations and a particular type of planar trees. A very nice applica-
tion of this work is that it allows to have a linear time uniform sampling for plane
triangulation. : it is possible to generate a random tree corresponding to a plane
triangulation with n vertices in time linear in n. The transformation from the tree
to the triangulation is also linear. The distribution of the random trees is uniform.
No so efficient uniform sampling is known for higher genus.

151
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Castelli Aleardi, Fusy and Lewiner [Castelli Aleardi et al., 2010] adapt the PS
method to encode planar triangulations with boundaries. A consequence of this work
is that any triangulation of an oriented surface can be encoded by cutting the surface
along non-contractible cycles and see the surface as a planar map with boundaries.
This method is a first attempt to generalize the PS algorithm to higher genus. The
algorithm obtained is asymptotically optimal (in terms of number of bits) but it is
not linear, nor bijective. Generalizations to plane maps that allow α-orientations for
α > 3 can be found in [Albenque and Poulalhon, 2013; Bernardi, 2007; Duchi et al.,
2013]. Interestingly, this kind of generalization can also be imagined in the torus
case by using the same kind of tools we use in this chapter.

The goal of this chapter is to present a new generalization of the PS algorithm to
higher genus based on some strong structural properties. Applied on the canonical
Schnyder woods of a toroidal triangulation, what remains after the execution of the
algorithm is a rooted unicellular map that can be encoded optimally using 3.2451n
bits. Moreover, the algorithm runs in linear time and leads to a new bijection between
toroidal triangulations and a particular type of unicellular maps.

The main issue while trying to extend the PS algorithm to higher genus is the
accessibility, i.e. the existence of an oriented path from every vertex to the special
face. Accessibility toward the outer face is given almost for free in the planar case
because of Euler’s formula that sums to a strictly positive value. For an oriented
surface of genus g ≥ 1 new difficulties occur. Already in genus 1, even if the orien-
tation is minimal and accessible the PS algorithm can visit all the vertices but not
all the corners of the map because of the existence of non-contractible cycles. We
can show that the canonical orientation that we define avoids this problem. In genus
g ≥ 2 things get even more difficult.

Another problem is to recover the original map after the execution of the algo-
rithm. If what remains after the execution of PS method is a spanning unicellular
map then the map can be recovered with the same simple rules as in the plane.
Unfortunately, for many minimal orientations the algorithm leads to a spanning uni-
cellular embedded graph that is not a map (the only face is not a disk) and it is not
possible to directly recover the original map. Here again, the choice of the canonical
orientation ensures that this never happens.

Finally the method presented here can be implemented in linear time. Clearly the
execution of the PS algorithm is linear but the difficulty is to provide the algorithm
with the appropriate input orientation. Computing the minimal Schnyder wood of
a planar triangulation can be done in linear time quite easily by using a so-called
shelling order (or canonical order, see [Kant, 1996]). Other similar ad-hoc linear
algorithms can be found for other kinds of α-orientations of planar maps (see for
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example [Fusy, 2007, Chapter 3]). Such methods are not known in higher genus.
We solve this problems by first computing an orientation in the canonical lattice of
Section 2.4.4 and then go down in the lattice to find the minimal orientation. All
this can be performed in linear time.

In Section 5.2, we introduce a reformulation of the Poulalhon and Schaeffer origi-
nal algorithm that is applicable to any orientation of any map on an oriented surface.
The main theorem of this chapter is proved in Section 5.3, that is, for a toroidal trian-
gulation given with an appropriate root and orientation, the output of the algorithm
is a toroidal spanning unicellular map. In Section 5.4, we show how one can recover
the original triangulation from the output. This output is then used in Section 5.5 to
optimally encode a toroidal triangulation. The linear time complexity of the method
is discussed in Section 5.6. In Section 5.7, we exhibit a bijection between appropri-
ately rooted toroidal triangulations and rooted toroidal unicellular maps. A similar
bijection with non-rooted maps is described in Section 5.9. To obtain the non-rooted
bijection, further structural results concerning the particular Schnyder woods con-
sidered in this chapter are given in Section 5.8. Finally, a possible generalization to
higher genus is discussed in Section 5.10.

5.2 The Poulalhon and Schaeffer Algorithm on

Oriented Surfaces

In this section we introduce a reformulation of the Poulalhon and Schaeffer original
algorithm. This version is more general in order to be applicable to any orientation
of any map on an oriented surface. The execution slightly differs from the original
formulation, even on planar triangulations. In [Poulalhon and Schaeffer, 2006], the
authors first delete some outer edges of the triangulation before executing the al-
gorithm. We do not consider any edge as special here since we want to apply the
algorithm on any surface, but the core of the algorithm is the same. We show general
properties of the algorithm in this section before considering toroidal triangulations
in the forthcoming sections.

Algorithm PS

Input : A map whose graph G is oriented, a root vertex v0 and a root edge e0

incident to v0.

Output : An embedded graph U with stems.

1. Let v := v0, e := e0, U := ∅.
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2. Let v′ be the extremity of e different from v.

Case 1 : e is unmarked and entering v. Add e to U and set v := v′.

Case 2 : e is unmarked and leaving v. Add a stem to U incident to v and
corresponding to e.

Case 3 : e is already marked and entering v. Do nothing.

Case 4 : e is already marked and leaving v. Set v := v′.

3. Mark e.

4. Let e be the next edge around v in counterclockwise order after the current e.

5. While (v, e) 6= (v0, e0) go back to 2.

6. Return U .

We insist on the fact that the output of Algorithm PS is a graph embedded on
the same surface as the input map but that this embedded graph is not necessarily
a map (i.e some faces may not be homeomorphic to open disks). In the following
section we show that in our specific case the output U is a unicellular map.

Consider any oriented map G on an oriented surface given with a root vertex v0

and a root edge e0 incident to v0. When Algorithm PS is considering a couple
(v, e) we see this like it is considering the angle at v that is just before e in clockwise
order. The particular choice of v0 and e0 is thus in fact a particular choice of a root
corner c0 that automatically defines a root vertex v0, a root edge e0, as well as a root
face f0. From now on we consider that the input of Algorithm PS is an oriented
map plus a root angle (without specifying the root vertex, face and edge).

The corner graph of G, is the graph defined on the corners of G and where two
corners are adjacent if and only if they are consecutive around a vertex or around a
face. An execution of Algorithm PS can be seen as a walk in the corner graph.
Figure 87 illustrates the behavior of the algorithm corresponding to Case 1 to 4. In
each case, the algorithm is considering the corner in top left position and depending
on the marking of the edge and its orientation the next corner that is considered is
the one that is the end of the magenta arc of the corner graph. The cyan edge of
Case 1 represents the edge that is added to U by the algorithm. The stems of U
added in Case 2 are not represented in cyan, in fact we will represent them later by
an edge in the dual. Indeed seeing the execution of Algorithm PS as a walk in
the corner graph enables us to show that Algorithm PS behaves exactly the same
in the primal or in the dual map (as explained later).
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non−marked non−marked

Case 1 Case 2

marked marked

Case 3 Case 4

Figure 87: The four cases of Algorithm PS .

On Figure 88, we give an example of an execution of Algorithm PS on the
orientation corresponding to the minimal HTC Schnyder wood of K7 of Figure 52.

Let c be a particular corner of the map G. It is adjacent to four other corners
in the corner graph (see Figure 89). Let v, f be such that c is a corner of vertex
v and face f . The next-vertex (resp. previous-vertex) corner of c is the angle
appearing just after (resp. before) c in counterclockwise order around v. Similarly,
the next-face (resp. previous-face) angle of c is the corner appearing just after
(resp. before) c in clockwise order around f . These definitions enable one to orient
consistently the edges of the corner graph like in Figure 89 so that for every oriented
edge (c, c′), c′ is a next-vertex or next-face corner of c.

The different cases depicted in Figure 87 show that an execution of Algorithm
PS is just an oriented walk in the corner graph (i.e. a walk that is following the
orientation of the edges described in Figure 89). The condition in the while loop
ensures that when the algorithm terminates, this walk is back to the root corner.
The following proposition shows that the algorithm actually terminates:

Proposition 5.2.1. Consider an oriented map G on an oriented surface and a root
corner c0. The execution of Algorithm PS on (G, c0) terminates and corresponds
to a cycle in the corner graph.

Proof. We consider the oriented walk W in the corner graph corresponding to the
execution of Algorithm PS . Note that W may be infinite. The walk W starts with
c0, and if it is finite it ends with c0 and contains no other occurrence of c0 (otherwise
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Figure 88: An execution of Algorithm PS on K7 given with the orientation corre-
sponding to the minimal HTC Schnyder wood of Figure 52. Vertices are numbered
in black. The root corner is identified by a root symbol and chosen in the face for
which the orientation is minimal (i.e. the shaded face of Figure 52). The magenta
arrows and numbers are here to help the reader to follow the cycle in the corner
graph. The output U is a toroidal unicellular map, represented here as an hexagon
where the opposite sides are identified.

Figure 89: Orientation of the edges of the corner graph.

the algorithm should have stopped earlier). Toward a contradiction, suppose that
W is not simple (i.e. some corners different from the root corner c0 are repeated).
Let a 6= c0 be the first corner along W that is met for the second time. Let c1, c2 be
the corners appearing before the first and second occurrence of c in W , respectively.
Note that c1 6= c2 by the choice of c.

If c1 is the previous-vertex corner of c, then c2 is the previous-face corner of c.
When the algorithm considers c1, none of c and c2 are already visited, thus edge e
is not marked. Since the execution then goes to c after c1, we are in Case 2 and
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the edge e between c and c1 is oriented from v, where v is the vertex incident to c.
Afterward, when the algorithm reaches c2, Case 3 applies and the algorithm cannot
go to c, a contradiction. The case where c1 is the previous-face corner of c is similar.

So W is simple. Since the corner graph is finite, W is finite. So the algorithm
terminates, thus W ends on the root corner and W is a cycle.

In the next section we see that in some particular cases the cycle in the corner
graph corresponding to the execution of the PS algorithm (Proposition 5.2.1) can be
shown to be Hamiltonian like on Figure 88.

By Proposition 5.2.1, a corner is considered at most once by Algorithm PS.
This implies that the corners around an edge can be visited in different ways depicted
on Figure 90. Consider an execution of Algorithm PS on G. Let C be the cycle
formed in the corner graph by Proposition 5.2.1. Let P be the set of edges of
the output U (without the stems) and Q be the set of dual edges of edges of G
corresponding to stems of U . These edges are represented on Figure 90 in cyan for
P and in yellow for Q. They are considered with their orientation (recall that the
dual edge e∗ of an edge e goes from the face on the left of e to the face on the right
of e). Note that C does not cross an edge of P or Q, and moreover P and Q do not
intersect (i.e. an edge can be in P or its dual in Q but both cases cannot happen).

2

1

32

1 4

Case 1 alone Case 1 and then 4

1 2

4

21

3

Case 2 alone Case 2 and then 3

Not visited

Figure 90: The different cases of Algorithm PS seen in a dual way. The number
of the corners gives the order in which the algorithm visits them (unvisited corners
are not numbered). The edges of P and Q are respectively cyan and yellow.

One can remark that the cases of Figure 90 are dual of each other. One can
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see that Algorithm PS behaves exactly the same if applied on the primal map
or on the dual map. The only modifications to make is to start the algorithm with
the face f0 as the root vertex, the dual of edge e0 as the root edge and to replace
counterclockwise by clockwise at Line 4. Then the cycle C formed in the corner graph
is exactly the same and the output is Q with stems corresponding to P (instead of P
with stems corresponding to Q). Note that this duality is also illustrated by the fact
that the minimality of the orientation of G w.r.t. the root face is nothing else than
the accessibility of the dual orientation toward the root face. Indeed, a clockwise
null-homologous oriented subgraph of G w.r.t f0 corresponds to a directed cut of
the dual where all the edges are oriented from the part containing f0. The following
lemma shows the connectivity of P and Q:

Lemma 5.2.2. At each step of the algorithm, for every vertex v appearing in an
edge of P (resp. Q), there is an oriented path from v to v0 (resp. f0) consisting only
of edges of P (resp. Q). In particular P and Q are connected.

Proof. If at a step a new vertex is reached then it correspond to Case 1 and the
corresponding edge is added in P and oriented from the new vertex, so the property
is satisfied by induction. As observed earlier the algorithm behaves similarly in the
dual map.

Let C be the set of corners of G that are not in C. Any edge of G is bounded by
exactly 4 corners. Since C is a cycle, the 4 corners around an edge are either all in
C, all in C or 2 in each set (see Figure 90). Moreover, if they are 2 in each set, these
sets are separated by an edge of P or an edge of Q. Hence the frontier between C
and C is a set of edges of P and Q. Moreover this frontier is an union of oriented
closed walks of P and of oriented closed walks of Q. In the next section we study
this frontier in more details to show that C is empty in the case considered there.

5.3 From Triangulations to Unicellular Maps

Let G be a toroidal triangulation. In order to choose appropriately the root corner
c0, we have to consider separating triangles. A triangle is a closed walk of size 3 (it
is not necessarily a cycle since non-null-homologous loops are allowed and it is not
necessarily null-homologous). A separating triangle is a null-homologous triangle
that is different from a face of G. We say that a corner is in the strict interior of
a separating triangle if it is in its null-homologous region and not incident to a
vertex of the triangle. We choose as root corner c0 any corner that is not in the strict
interior of a separating triangle. One can easily see that such a corner c0 always
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exists. Indeed the interiors of two null-homologous triangles are either disjoint or
one is included in the other. So, the corners that are incident to a null-homologous
triangle whose interior is maximal by inclusion satisfy the property.

The choice of a root corner that is not in the interior of a separating triangle
is mandatory to apply Poulalhon and Schaeffer method. Indeed, in a 3-orientation
of a toroidal triangulation, by Euler’s formula, all the edges that are incident to a
separating triangle and in its interior are oriented towards the triangle. Thus if one
apply Algorithm PS from a corner in the strict interior of a triangle, it will be
stucked in its interior and will not visit all the vertices.

A subgraph of a graph is spanning if it is covering all the vertices. The main
result of this section is the following theorem (see Figure 88 for an example):

Theorem 5.3.1. Consider a toroidal triangulation G, a root corner c0 that is not
in the strict interior of a separating triangle and the orientation of the edges of G
corresponding to the minimal HTC Schnyder wood with respect to the root face f0

containing c0. Then the output U of Algorithm PS applied on (G, c0) is a toroidal
spanning unicellular map.

Consider a toroidal triangulation G, a root corner c0 that is not in the strict
interior of a separating triangle and the orientation of the edges of G corresponding
to the minimal HTC Schnyder wood with respect to the root face f0 containing
c0. Let U be the output of Algorithm PS applied on (G, c0). We use the same
notation as in previous section: the cycle in the corner graph is C, the set of corners
that are not in C is C, the set of edges of U is P , the dual edges of stems of U is Q.
The frontier is defined as follows. Add to C and C all the edges between adjacent
corners. Then the frontier is the set of edges of G and G∗ that are not crossing by
one of this edges.

Lemma 5.3.2. The frontier between C and C contains no oriented closed walk of
Q.

Proof. Suppose by contradiction that there exists such a walk W . Then along this
walk, all the dual edges of W are edges of G oriented from the region containing C
toward C as one can see in Figure 90. If W is non-null-homologous, then W contains
an oriented non-null-homologous cycle, a contradiction to Lemma 2.4.23. So W is
null-homologous. So it contains an oriented null-homologous cycle W ′, and then
either C is in the null-homologous region delimited by W ′, or not. The two case are
considered below:

Suppose first that C lies in the non-null-homologous region of W ′. Then consider
the plane map G′ obtained from G by keeping only the vertices and edges that lie
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(strictly) in the null-homologous region delimited by W ′. Let n′ be the number of
vertices of G′. All the edges incident to G′ that are not in G′ are entering G′. So in
G′ all the vertices have outdegree 3 as we are considering 3-orientations of G. Thus
the number of edges of G′ is exactly 3n′, contradicting the fact that the maximal
number of edges of planar map on n vertices is 3n− 6 by Euler’s formula.

Suppose now that C lies in the null-homologous region of W ′. All the dual edges
of W ′ are edges of G oriented from its null-homologous region toward its exterior.
Consider the graph Gout obtained from G by removing all the edges that are cut by
W ′ and all the vertices and edges that lie in the null-homologous region of W ′. As
G is a map, the face of Gout containing W ′ is homeomorphic to an open disk. Let
F be its facial walk (in Gout) and let k be the length of F . We consider the map
obtained from the facial walk F by putting back the vertices and edges that lied
inside. We transform this map into a plane map G′ by duplicating the vertices and
edges appearing several times in F , in order to obtain a triangulation of a cycle of
length k. Let n′,m′, f ′ be the number of vertices, edges and faces of G′. Every inner
vertex of G′ has outdegree 3, there are no other inner edges, so the total number of
edges of G′ is m′ = 3(n′ − k) + k. All the inner faces have size 3 and the outer face
has size k, so 2m′ = 3(f ′ − 1) + k. By Euler’s formula n′ −m′ + f ′ = 2. Combining
the three equalities gives k = 3 and F is hence a separating triangle of G. This
contradicts the choice of the root corner, as it should not lie in the strict interior of
a separating triangle.

Lemma 5.3.3. The cycle C is a Hamiltonian cycle of the corner graph, all the edges
of G are marked exactly twice, the subgraph Q of G∗ is spanning, and, if n ≥ 2, the
subgraph P of G is spanning.

Proof. Suppose for a contradiction that C is non empty. By Lemma 5.3.2 and Sec-
tion 5.2, the frontier T between C and C is an union of oriented closed walks of P .
Hence a face of G has either all its corners in C or all its corners in C. Moreover
T is a non-empty union of oriented closed walk of P that are oriented clockwise
according to the set of faces containing C (see the first case of Figure 90). This set
does not contain f0 since c0 is in f0 and C. As in Section 2.4.4, let F be the set of
counterclockwise facial walks of G and F0 be the counterclockwise facial walk of f0.
Let F ′ = F \F0, and FC ⊆ F ′ be the set of counterclockwise facial walks of the faces
containing C. We have T = −

∑
F∈FC

∂(F ). So T is a clockwise non-empty null-

homologous oriented subgraph with respect to f0. This contradicts Lemma 2.4.22
and the minimality of the orientation with respect to f0. So C is empty, thus C is
Hamiltonian and all the edges of G are marked twice.

Suppose for a contradiction that n ≥ 2 and P is not spanning. Since the algorithm
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starts at v0, P is not covering a vertex v of G different from v0. Then the corners
around v cannot be visited since by Figure 90 the only way to move from a corner of
one vertex to a corner of another vertex is through an edge of P incident to them. So
P is spanning. The proof is similar for Q (note that in this case we have f ≥ 2).

Lemma 5.3.4. The first cycle created in P (resp. in Q) by the algorithm is oriented.

Proof. Let e be the first edge creating a cycle in P while executing Algorithm
PS and consider the steps of Algorithm PS before e is added to P . So P is a
tree during all these steps. For every vertex of P we define P (v) the unique path
from v to v0 in P (while P is empty at the beginning of the execution, we define
P (v0) = {v0}). By Lemma 5.2.2, this path P (v) is an oriented path. We prove the
following

Claim 4. Consider a step of the algorithm before e is added to P and where the
algorithm is considering a vertex v. Then all the corners around the vertices of P
different from the vertices of P (v) are already visited.

Proof. Suppose by contradiction that there is such a step of the algorithm where
some corners around the vertices of P different from the vertices of P (v) have not
been visited. Consider the first such step. Then clearly we are not at the beginning of
the algorithm since P = P (v) = {v0}. So at the step just before, the conclusion holds
and now it does not hold anymore. Clearly at the step before we were considering a
vertex v′ distinct from v, otherwise P (v) and P have not changed and we have the
conclusion. So from v′ to v we are either in Case 1 or Case 4 of Algorithm PS. If
v has been considered by Case 1, then P (v) contains P (v′) and the conclusion holds.
If v has been considered by Case 4, then since P is a tree, all the corners around v′

have been considered and v′ is the only element of P \P (v) that is not in P \P (v′).
Thus the conclusion also holds.

Consider the iteration of Algorithm PS where e is added to P . The edge e
is added to P by Case 1, so e is oriented from a vertex u to a vertex v such that v
is already in P or v is the root vertex v0. Consider the step of the algorithm just
before u is added to P . By Claim 4, vertex u is not in P \ P (v) (otherwise e would
have been considered before and it would be a stem). So u ∈ P (v) and P (v) ∪ {e}
induces an oriented cycle of G. The proof is similar for Q.

Lemma 5.3.5. P is a spanning unicellular map of G and Q is a spanning tree of
G∗. Moreover one is the dual of the complement of the other.
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Proof. Suppose that Q contains a cycle, then by Lemma 5.3.4 it contains an ori-
ented cycle of G∗. This cycle is null-homologous by Lemma 2.4.23. Recall that by
Lemma 5.3.3, C is a Hamiltonian cycle, moreover it does not cross Q, a contradiction.
So Q contains no cycle and is a tree.

By Lemma 5.3.3, all the edges of G are marked at the end. So every edge of G
is either in P or its dual in Q (and not both). Thus P and Q are the dual of the
complement of each other. So P is the dual of the complement of a spanning tree of
G∗. Thus P is a spanning unicellular map of G.

Theorem 5.3.1 is then a direct reformulation of Lemma 5.3.5 by the definition of
P and Q:

A toroidal unicellular map on n vertices has exactly n + 1 edges: n− 1 edges of
a tree plus 2 edges corresponding to the size of a basis of the homology (i.e. plus 2g
in general for an oriented surface of genus g). Thus a consequence of Theorem 5.3.1
is that the obtained unicellular map U has exactly n vertices, n + 1 edges and
2n− 1 stems since the total number of edges is 3n. The orientation of G induces an
orientation of U such that the stems are all outgoing, and such that while walking
clockwise around the unique face of U from c0, the first time an edge is met, it is
oriented counterclockwise according to this face, see Figure 91 where all the tree-like
parts and stems are not represented. There are two types of toroidal unicellular
maps depicted on Figure 91. Two cycles of U may intersect either on a single vertex
(square case) or on a path (hexagonal case). The square can be seen as a particular
case of the hexagon where one side has length zero and thus the two corners of the
hexagon are identified.

In Figure 92, we give several examples of executions of Algorithm PS on mini-
mal 3-orientations. These examples show how important is the choice of the minimal
HTC Schnyder wood in order to obtain Theorem 5.3.1. In particular, the third ex-
ample shows that Algorithm PS can visit all the corners of the triangulation (i.e.
the cycle in the corner graph is Hamiltonian) without outputting an unicellular map.

Note that the orientations of Figure 92 are not Schnyder woods. One may wonder
if the fact of being a Schnyder wood is of any help for our method. This is not the case
since there are examples of minimal Schnyder woods that are not HTC and where
Algorithm PS does not visit all the vertices. One can obtain such an example
by replicating 3 times horizontally and then 3 times vertically the second example
of Figure 92 to form a 3 × 3 tiling and starts Algorithm PS from the same root
corner. Conversely, there are minimal Schnyder woods that are not HTC where
Algorithm PS does output a toroidal spanning unicellular map (the Schnyder
wood of Figure 53 can serve as an example while starting from a corner of the only
face oriented clockwise).
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Figure 91: The two types of rooted toroidal unicellular maps.

5.4 Recovering the Original Triangulation

This section is dedicated to show how to recover the original triangulation from the
output of Algorithm PS. The method is very similar to [Poulalhon and Schaeffer,
2006] since like in the plane the output has only one face that is homeomorphic to
an open disk (i.e. a tree in the plane and an unicellular map in general).

Theorem 5.4.1. Consider a toroidal triangulation G, a root corner c0 that is not
in the strict interior of a separating triangle and the orientation of the edges of G
corresponding to the minimal HTC Schnyder wood with respect to the root face f0

containing c0. From the output U of Algorithm PS applied on (G, c0) one can
reattach all the stems to obtain G by starting from the root corner c0 and walking
along the face of U in counterclockwise order (according to this face): each time a
stem is met, it is reattached in order to create a triangular face on its left side.

thm 5.4.1 is illustrated on Figure 93 where one can check that the obtained
toroidal triangulation is K7 (like on the input of Figure 88).

In fact in this section we define a method, more general than the one described
in thm 5.4.1, that will be useful in next sections.

Let Ur(n) denote the set of toroidal unicellular maps U rooted on a particular
corner, with exactly n vertices, n+ 1 edges and 2n− 1 stems satisfying the following
property. A vertex that is not the root, has exactly 2 stems if it is not a corner, 1
stem if it is the corner of a hexagon and 0 stem if it is the corner of a square. The



164 CHAPTER 5. BIJECTIONS FOR TOROIDAL TRIANGULATIONS

(1) (2)

(3)

Figure 92: Examples of minimal 3-orientations that are not HTC Schnyder woods
and where Algorithm PS respectively: (1) does not visit all the vertices, (2) visits
all the vertices but not all the corners, and (3) visits all the corners but does not
output an unicellular map.

root vertex has 1 additional stem, i.e. it has 3 stems if it is not a corner, 2 stems if
it is the corner of a hexagon and 1 stem if it is the corner of a square. Note that the
output U of Algorithm PS given by Theorem 5.3.1 is an element of Ur(n).

Similarly to the planar case [Poulalhon and Schaeffer, 2006], we define a general
way to reattached step by step all the stems of an element U of Ur(n). Let U0 = U ,
and, for 1 ≤ k ≤ 2n − 1, let Uk be the map obtained from Uk−1 by reattaching one
of its stem (we explicit below which stem is reattached and how). The special face
of U0 is its only face. For 1 ≤ k ≤ 2n − 1, the special face of Uk is the face on
the right of the stem of Uk−1 that is reattached to obtain Uk. For 0 ≤ k ≤ 2n − 1,
the border of the special face of Uk consists of a sequence of edges and stems. We
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Figure 93: Example of how to recover the original toroidal triangulation K7 from
the output of Algorithm PS .

define an admissible triple as a sequence (e1, e2, s), appearing in counterclockwise
order along the border of the special face of Uk, such that e1 = (u, v) and e2 = (v, w)
are edges of Uk and s is a stem attached to w. The closure of the admissible triple
consists in attaching s to u, so that it creates an edge (w, u) oriented from w to u and
so that it creates a triangular face (u, v, w) on its left side. The complete closure
of U consists in closing a sequence of admissible triple, i.e. for 1 ≤ k ≤ 2n − 1, the
map Uk is obtained from Uk−1 by closing any admissible triple.

Note that, for 0 ≤ k ≤ 2n− 1, the special face of Uk contains all the stems of Uk.
The closure of a stem reduces the number of edges on the border of the special face
and the number of stems by 1. At the beginning, the unicellular map U0 has n + 1
edges and 2n−1 stems. So along the border of its special face, there are 2n+2 edges
and 2n− 1 stems. Thus there is exactly three more edges than stems on the border
of the special face of U0 and this is preserved while closing stems. So at each step
there is necessarily at least one admissible triple and the sequence Uk is well defined.
Since the difference of three is preserved, the special face of U2n−2 is a quadrangle
with exactly one stem. So the reattachment of the last stem creates two faces that
are triangles and at the end U2n−1 is a toroidal triangulation. Note that at a given
step there might be several admissible triples but their closure are independent and
the order in which they are performed does not modify the obtained triangulation
U2n−1.
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We now apply the closure method to our particular case. Consider a toroidal
triangulation G, a root corner c0 that is not in the strict interior of a separating
triangle and the orientation of the edges of G corresponding to the minimal HTC
Schnyder wood with respect to the root face f0. Let U be the output of Algorithm
PS applied on (G, c0).

Lemma 5.4.2. When a stem of U is reattached to form the corresponding edge of
G, it splits the (only) face of U into two faces. The root corner of U is in the face
that is on the right side of the stem.

Proof. By Lemma 5.3.3, the execution of Algorithm PS corresponds to an Hamil-
tonian cycle C = (c0, . . . , a2m, c0) in the corner graph of G. Thus C defines a total
order < on the corners of G where ci < cj if and only if i < j. Let us consider
now the corners on the face of U . Note that such a corner corresponds to several
corners of G, that are consecutive in C and that are separated by a set of incoming
edges of G (those incoming edges corresponding to stems of U). Thus the order on
the corners of G defines automatically an order on the corners of U . The corners of
U considered in clockwise order along the border of its face, starting from the root
corner, correspond to a sequence of strictly increasing corners for <.

Consider a stem s of U that is reattached to form an edge e of G. Let cs be the
corner of U that is situated just before s (in clockwise order along the border of the
face of U) and c′s be the corner of U where s should be reattached. If c′s < cs, then
when Algorithm PS consider the corner cs, the edge corresponding to s is already
marked and we are not in Case 2 of Algorithm PS . So cs < c′s and c0 is on the
right side of s.

Recall that U is an element of Ur(n) so we can apply on U the complete closure
procedure described above. We use the same notation as before, i.e. let U0 = U and
for 1 ≤ k ≤ 2n − 1, the map Uk is obtained from Uk−1 by closing any admissible
triple. The following lemma shows that the triangulation obtained by this method
is G:

Lemma 5.4.3. The complete closure of U is G, i.e. U2n−1 = G.

Proof. We prove by induction on k that every face of Uk is a face of G, except for
the special face. This is true for k = 0 since U0 = U has only one face, the special
face. Let 0 ≤ k ≤ 2n − 2, and suppose by induction that every non-special face of
Uk is a face of G. Let (e1, e2, s) be the admissible triple of Uk such that its closure
leads to Uk+1, with e1 = (u, v) and e2 = (v, w). The closure of this triple leads to a
triangular face (u, v, w) of Uk+1. This face is the only “new” non-special face while
going from Uk to Uk+1.
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Suppose, by contradiction, that this face (u, v, w) is not a face of G. Let cv (resp.
cw) be the corner of Uk at the special face, between e1 and e2 (resp. e2 and s). Since
G is a triangulation, and (u, v, w) is not a face of G, there exists at least one stem
of Uk that should be attached to cv or cw to form a proper edge of G. Let s′ be
such a stem that is the nearest from s. In G the edges corresponding so s and s′

should be incident to the same triangular face. Let x be the origin of the stem s′.
Let z ∈ {v, w} such that s′ should be reattached to z. If z = v, then s should be
reattached to x to form a triangular face of G. If z = w, then s should be reattached
to a common neighbor of w and x located on the border of the special face of Uk in
counterclockwise order between w and x. So in both cases s should be reattached to
a vertex y located on the border of the special face of Uk in counterclockwise order
between w and x (with possibly y = x). To summarize s goes from w to y and s′

from x to z, and z, x, y, w appear in clockwise order along the special face of Uk. By
Lemma 5.4.2, the root corner is on the right side of both s and s′, this is not possible
since their right sides are disjoint, a contradiction.

So for 0 ≤ k ≤ 2n− 2, all the non-special faces of Uk are faces of G. In particular
every face of U2n−1 except one is a face of G. Then clearly the (triangular) special
face of U2n−1 is also a face of G, hence U2n−1 = G.

Lemma 5.4.3 shows that one can recover the original triangulation from U with
any sequence of admissible triples that are closed successively. This does not explain
how to find the admissible triples efficiently. In fact the root corner can be used to
find a particular admissible triple of Uk:

Lemma 5.4.4. For 0 ≤ k ≤ 2n − 2, let s be the first stem met while walking
counterclockwise from c0 in the special face of Uk. Then before s, at least two edges
are met and the last two of these edges form an admissible triple with s.

Proof. Since s is the first stem met, there are only edges that are met before s.
Suppose by contradiction that there is only zero or one edge met before s. Then the
reattachment of s to form the corresponding edge of G is necessarily such that the
root corner is on the left side of s, a contradiction to Lemma 5.4.2. So at least two
edges are met before s and the last two of these edges form an admissible triple with
s.

Lemma 5.4.4 shows that one can reattach all the stems by walking once along
the face of U in counterclockwise order. Thus we obtain thm 5.4.1.

Note that U is such that the complete closure procedure described here never
wraps over the root corner, i.e. when a stem is reattached, the root corner is
always on its right side (see Lemma 5.4.2). The property of never wrapping over
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the root corner is called a balanced corner in [Albenque and Poulalhon, 2013].
Let Ur,b(n) denote the set of elements of Ur(n) that are balanced. So the output
U of Algorithm PS given by thm 5.3.1 is an element of Ur,b(n). We exhibit in
Section 5.7 a bijection between appropriately rooted toroidal triangulations and a
particular subset of Ur,b(n).

The possibility to close admissible triples in any order to recover the original
triangulation is interesting comparing to the simpler method of Theorem 5.4.1 since
it enables to recover the triangulation even if the root corner is not given. This
property is used in Section 5.9 to obtain a bijection between toroidal triangulations
and some unrooted unicellular maps.

Moreover if the root corner is not given, then one can simply start from any corner
of U , walk twice around the face of U in counterclockwise order and reattached all
the admissible triples that are encountered along this walk. Walking twice ensure
that at least one complete round is done from the root corner. Since only admissible
triples are considered, we are sure that no unwanted reattachment is done during the
process and that the final map is G. This enables to reconstruct G in linear time
even if the root corner is not known. This property is used in Section 5.5.

5.5 Optimal Encoding

The results presented in the previous sections allow us to generalize the encoding of
planar triangulations, defined by Poulalhon and Schaeffer [Poulalhon and Schaeffer,
2006], to triangulations of the torus. The construction is direct and it is hence
really different from the one of [Castelli Aleardi et al., 2010] where triangulations of
surfaces are cut in order to deal with planar triangulations with boundaries. Here
we encode the unicellular map outputted by Algorithm PS by a plane rooted tree
with n vertices and with exactly two stems attached to each vertex, plus O(log(n))
bits. As in [Castelli Aleardi et al., 2010], this encoding is asymptotically optimal
and uses approximately 3.2451n bits. The advantage of our method is that it can be
implemented in linear time. Moreover we believe that our encoding gives a better
understanding of the structure of triangulations of the torus. It is illustrated with
new bijections that are obtained in Sections 5.7 and 5.9.

Consider a toroidal triangulation G, a root corner c0 that is not in the strict
interior of a separating triangle and the orientation of the edges of G corresponding
to the minimal HTC Schnyder wood with respect to the root face f0. Let U be the
output of Algorithm PS applied on (G, c0). As already mentioned at the end of
Section 5.4, to retrieve the triangulation G one just needs to know U without the
information of its root corner (by walking twice around the face of U in counter-
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clockwise order and reattached all the admissible triples that are encountered along
this walk, one can recover G). Hence to encode G, one just has to encode U without
the position of the root corner around the root vertex (see Figure 94.(a)).

By Lemma 5.2.2, the unicellular map U contains a spanning tree T which is
oriented from the leaves to the root vertex. The tree T contains exactly n− 1 edges,
so there is exactly 2 edges of U that are not in T . We call these edges the special
edges of U . We cut these two special edges to transform them into stems of T (see
Figures 94.(a) and (b)). We keep the information of where are the special stems in T
and on which corner of T they should be reattached. This information can be stored
with O(log(n)) bits. One can recover U from T by reattaching the special stems in
order to form non-null-homologous cycles with T (see Figure 94.(c)).
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Figure 94: From unicellular maps to trees with special stems and back.

So T is a plane tree on n vertices, each vertex having 2 stems except the root
vertex v0 having three stems. Choose any stem s0 of the root vertex, remove it and
consider that T is rooted at the angle where s0 should be attached. The information
of the root enables to put back s0 at its place. So now we are left with a rooted plane
tree T on n vertices where each vertex has exactly 2 stems (see Figure 95.(a)).

This tree T can easily be encoded by a binary word on 6n−2 bits: that is, walking
in counterclockwise order around T from the root corner, writing a “1” when going
down along T , and a “0” when going up along T (see Figure 95.(a)). As in [Poulalhon
and Schaeffer, 2006], one can encode T more compactly by using the fact that each
vertex has exactly two stems. Thus T is encoded by a binary word on 4n − 2 bits:
that is, walking in counterclockwise order around T from the root corner, writing a
“1” when going down along an edge of T , and a “0” when going up along an edge or
along a stem of T (see Figure 95.(b) where the “red 1’s” of Figure 95.(a) have been
removed). Indeed there is no need to encode when going down along stems, this
information can be retrieved afterward. While reading the binary word to recover
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T , when a “0” is met, we should go up in the tree, except if the vertex that we are
considering does not have already its two stems, then in that case we should create
a stem (i.e. add a “red 1” before the “0”). So we are left with a binary word on
4n− 2 bits with exactly n− 1 bits “1” and 3n− 1 bits “0”.
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Figure 95: Encoding a rooted tree with two stems at each vertex.

Similarly to [Poulalhon and Schaeffer, 2006], using [Bonichon et al., 2003, Lemma 7],
this word can then be encoded with a binary word of length log2

(
4n−2
n−1

)
+ o(n) ∼

n log2(256
27

) ≈ 3.2451n bits. Thus we have the following thm whose linearity is dis-
cussed in Section 5.6:

Theorem 5.5.1. Any toroidal triangulation on n vertices, can be encoded with a
binary word of length 3.2451n+ o(n) bits, the encoding and decoding being linear in
n.

5.6 Linear Complexity

In this section we show that the encoding method described in this chapter, that is
encoding a toroidal triangulation via an unicellular map and recovering the original
triangulation, can be performed in linear time. The only difficulty lies in providing
Algorithm PS with the appropriate input it needs in order to apply thm 5.3.1.
Then clearly the execution of Algorithm PS, the encoding phase and the recovering
of the triangulation are linear. Thus we have to show how one can find in linear time
a root corner c0 that is not in the strict interior of a separating triangle, as well as
the minimal HTC Schnyder wood with respect to the root face f0.
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Consider a toroidal triangulation G. Let us see how one can build a Schnyder
wood of G in linear time. The contraction of a non-loop-edge e of G is the operation
consisting of continuously contracting e until merging its two ends, as shown on
Figure 96. Note that only one edge of each pair of edges forming a null-homologous
2-cycle is preserved (edges ewx and ewy on the figure).

e
x y

u

v

x

wx wy

w y

e e

Figure 96: The contraction operation.

An edge uv is said to be contractible if it is not a loop and if it is not on a
separating triangle (i.e. if after contracting uv one obtains a triangulation that is still
without contractible 1- or 2-cycles). In [Gonçalves and Lévêque, 2013] the existence
of crossing Schnyder wood is proved by contraction. Unfortunately this proof cannot
easily be transformed into a linear algorithm because of the crossing property that has
to be maintained during the contraction process. Nevertheless we use contractions
to obtain non-necessarily crossing Schnyder woods. If the triangulation obtained
after contracting a contractible edge admits a Schnyder wood it is then easy to
obtain a Schnyder wood of G. The rules for decontracting an edge in the case of
toroidal triangulations are depicted on [Gonçalves and Lévêque, 2013, Figure 21]
where for each case one can choose any of the proposed colorings. For any toroidal
triangulation, one can find contractible edges until the toroidal map has only one
vertex (see [Mohar, 1996]). A Schnyder wood of the toroidal map on one vertex is
depicted on the right of Figure 49. Thus one can obtain a Schnyder wood of any
toroidal triangulation by this process. Nevertheless, to maintain linearity we have to
be more precise since it is not trivial to find contractible edges.

Consider an edge uv of G with incident faces uvx and vuy such that these vertices
appear in clockwise order around the corresponding face (so we are in the situation
of Figure 96). If u and v have more common neighbors, then consider their second
common neighbor going clockwise around u from uv (the first one being x, and the
last being y) and call it x′. Call y′ their second common neighbor going counter-
clockwise around u from uv. Then either uvx′ or uvy′ is a separating triangle or edge
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uv is contractible. We consider these two cases below:

• If uv is contractible, then we contract it and apply the procedure recursively to
obtain a Schnyder wood of the contracted graph. Then we update the Schnyder
wood as described above. Note that this update is done in constant time.

• If uvx′ (resp. uvy′) is a separating triangle, one can remove its interior, recur-
sively obtain a toroidal Schnyder wood of the remaining toroidal triangulation,
build a planar Schnyder wood of the planar triangulation inside uvx′ (resp.
uvy′), and then superimpose the two (by eventually permuting the colors) to
obtain a Schnyder wood of the whole graph. Note that computing a planar
Schnyder wood can be done in linear time using a canonical ordering (see [Kant,
1996]).

The difficulty here is to test if uvx′ or uvy′ are contractible triangles. For that
purpose, one first need to compute a basis (B1, B2) for the homology. Consider a
spanning tree of the dual map G∗. The map obtained from G by removing those
edges is unicellular, and removing its treelike parts one obtains two cycles (B1, B2)
(intersecting on a path with at least one vertex) that form a basis for the homology.
This can be computed in linear time for G and then updated in constant time when
some edge is contracted or when the interior of some separating triangle is removed.
Then a closed walk W , given with an arbitrary orientation, is contractible if and
only if W crosses Bi from right to left as many times as W crosses Bi from left to
right, for i ∈ {1, 2}. This test is linear in |W | hence constant time for the triangles
uvx′ and uvy′. Vertex u is fixed during the whole process so the total running time
to compute a Schnyder wood of G is linear.

From this Schnyder wood, one can compute in linear time a root corner c0 not
in the strict interior of a separating triangle. First note that in a 3-orientation of
a toroidal triangulation, the edges that are inside a separating triangle and that
are incident to the three vertices on the border are all oriented toward these three
vertices by Euler’s formula. Thus an oriented non-contractible cycle cannot enter in
the interior of a separating triangle. Now follow any oriented monochromatic path
of the Schnyder wood and stop the first time this path is back to a previously met
vertex v0. The end of this path forms an oriented monochromatic cycle C containing
v0. If C is contractible then Euler’s formula is violated in the contractible region.
Thus C is an oriented non-contractible cycle and cannot contain some vertices that
are in the interior of a separating triangle. So v0 is not in the interior of a separating
triangle and we can choose as root corner c0 any corner incident to v0.

In [Gonçalves et al., 2015] it is proved how one can transform any 3-orientation
(hence a Schnyder wood) of a toroidal triangulation into a half-crossing (hence HTC)
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Schnyder wood. The method consists in computing a so called “middle-path” (a
directed path where the next edge chosen is the one leaving in the “middle”) and
reversing some non-contractible “middle-cycles”. Clearly the method is linear even
if not explicitly mentioned in [Gonçalves et al., 2015]. Let D0 be the corresponding
obtained orientation of G.

It remains to compute the minimal HTC Schnyder wood with respect to the root
face f0. There is a generic known method [Meunier, 2015] (see also [Ueckerdt, 2011,
p.23]) to compute in linear time a minimal α-orientation of a planar map as soon as
an α-orientation is given. This method also works on oriented surfaces and can be
applied to obtain the minimal HTC Schnyder wood in linear time. We explain the
method briefly below.

It is much simpler to compute the minimal orientation Dmin homologous to D0

in a dual setting. The first observation to make is that two orientations D1, D2 of
G are homologous if and only if there dual orientations D∗1, D

∗
2 of G∗ are equivalent

up to reversing some directed cuts. Furthermore D1 ≤f0 D2 if and only if D∗1 can be
obtained from D∗2 by reversing directed cuts oriented from the part containing f0. Let
us compute D∗min which is the only orientation of G∗, obtained from D∗0 by reversing
directed cuts, and without any directed cut oriented from the part containing f0.
For this, consider the orientation D∗0 of G∗ = (F,E∗) and compute the set X ⊆ F of
vertices of G∗ that have an oriented path toward f0. Then (X,F \X) is a directed
cut oriented from the part containing f0 that one can reverse. Then update the set
of vertices that can reach f0 and go on until X = F . It is not difficult to see that
this can be done in linear time. Thus we obtain the minimal HTC Schnyder wood
with respect to f0 in linear time.

5.7 Bijection with Rooted Unicellular Maps

Given a toroidal triangulation G with a root corner c0, we have defined a unique
associated orientation: the minimal HTC Schnyder wood with respect to the root
face f0. Suppose that G is oriented according to the minimal HTC Schnyder wood.
If c0 is not in the strict interior of a separating triangle then thms 5.3.1 and 5.4.1
show that the execution of Algorithm PS on (G, c0) gives a toroidal unicellular
map with stems from which one can recover the original triangulation. Thus there
is a bijection between toroidal triangulations rooted from an appropriate angle and
their image by Algorithm PS. The goal of this section is to describe this image.

Recall from Section 5.4 that the output of Algorithm PS on (G, c0) is an
element of Ur,b(n). One may hope that there is a bijection between toroidal triangu-
lations rooted from an appropriate corner and Ur,b(n) since this is how it works in the
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planar case. Indeed, given a planar triangulation G, there is a unique orientation of
G (the minimal Schnyder wood) on which Algorithm PS, performed from an outer
corner, outputs a spanning tree. In the toroidal case, things are more complicated
since the behavior of Algorithm PS on minimal HTC Schnyder woods does not
characterize such orientations.

Figure 97 gives an example of two (non-homologous) orientations of the same
triangulation that are both minimal with respect to the same root face. For these two
orientations, the execution of Algorithm PS from the same root corner gives two
different elements of Ur,b(2) (from which the original triangulation can be recovered
by the method of thm 5.4.1). Thus we have to exhibit a particular property of HTC
Schnyder woods that can be used to characterize which particular subset of Ur,b(n)
is in bijection with appropriately rooted toroidal triangulations.

HTC orientation non-HTC orientation

Figure 97: A graph that can be represented by two different unicellular maps.

Let us use the γ0 property on Ur(n). Consider an element U of Ur(n) whose
edges and stems are oriented with respect to the root corner as follows: the stems
are all outgoing, and while walking clockwise around the unique face of U from c0,
the first time an edge is met, it is oriented counterclockwise with respect to the
face of U . Then one can compute γ on the cycles of U (edges and stems count).
We say that an unicellular map of Ur(n) satisfies the γ0 property if γ equals zero
on its (non-contractible) cycles. Let us call Ur,b,γ0(n) the set of elements of Ur,b(n)
satisfying the γ0 property. So the output of Algorithm PS given by thm 5.3.1 is
an element of Ur,b,γ0(n).

Let Tr(n) be the set of toroidal triangulations on n vertices rooted at a corner that
is not in the clockwise interior of a separating triangle. Then we have the following
bijection:

Theorem 5.7.1. There is a bijection between Tr(n) and Ur,b,γ0(n).

Proof. Consider the mapping g that associates to an element of Tr(n), the output of
Algorithm PS executed on the minimal HTC Schnyder wood with respect to the
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root face. By the above discussion the image of g is in Ur,b,γ0(n) and g is injective
since one can recover the original triangulation from its image by thm 5.4.1.

Conversely, given an element U of Ur,b,γ0(n) with root corner c0, one can build
a toroidal map G by the complete closure procedure described in Section 5.4. The
number of stems and edges of U implies that G is a triangulation. Recall that c0

defines an orientation on the edges and stems of U . Consider the orientation D of
G induced by this orientation. Since U is balanced, the execution of Algorithm
PS on (G, c0) corresponds to the cycle in the corner graph of U obtained by starting
from the root corner and walking clockwise in the face of U . Thus the output of
Algorithm PS executed on (G, c0) is U . It remains to show that G is appropriately
rooted and that D corresponds to the minimal HTC Schnyder wood with respect to
this root, then g will be surjective.

First note that by definition of Ur(n), the orientation D is a 3-orientation.

Suppose by contradiction that c0 is in the strict interior of a separating triangle.
Then, since we are considering a 3-orientation, by Euler’s formula, the edges in the
interior of this triangle and incident to its border are all entering the border. So
Algorithm PS started from the strict interior cannot visit the vertices on the
border of the triangle and outside. Thus the output of Algorithm PS is not a
toroidal unicellular map, a contradiction. So c0 is not in the strict interior of a
separating triangle.

The γ0 property of U implies that γ equals zero on two cycles of U . Hence these
two cycles considered in G also satisfy γ equals 0 and form a basis for the homology.
So D is a hTC Schnyder wood.

Suppose by contradiction that D is not minimal. Then, by Lemma 2.4.22, it
contains a clockwise (non-empty) null-homologous oriented subgraph with respect
to f0. With the notations of Section 2.4.4, let T be such a subgraph with T =
−
∑

F∈F ′ λF∂(F ), with λ ∈ N|F ′|. Let λF0 = 0, and λmax = maxF∈F λF . For 0 ≤ i ≤
λmax, let Xi = {F ∈ F |λF ≥ i}. For 1 ≤ i ≤ λmax, let Ti be the oriented subgraph
such that Ti = −

∑
F∈Xi

∂(F ). Then we have T =
∑

1≤i≤λmax
Ti. Since T is an

oriented subgraph, we have T ∈ {−1, 0, 1}|E(G)|. Thus for any edge of G, incident to
faces F1 and F2, we have (λF1 − λF2) ∈ {−1, 0, 1}. So, for 1 ≤ i ≤ λmax, the oriented
graph Ti is the frontier between the faces with λ value equal to i and i−1. So all the
Ti are edge disjoint and are oriented subgraphs of D. Since T is non-empty, we have
λmax ≥ 1, and T1 is non-empty. All the edges of T1 have a face of X1 on their right
and a face of X0 on their left. Since U is an unicellular map, and T1 is a (non-empty)
null-homologous oriented subgraph, at least one edge of T1 corresponds to a stem of
U . Let s be the last stem of U corresponding to an edge of T1 that is reattached
by the complete closure procedure. Consider the step where s is reattached. As the
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root corner (and thus f0) is in the special face (see the terminology of Section 5.4),
the special face is in the region defined by X0. Thus it is on the left of s when it
is reattached. This contradicts the fact that U is balanced. Thus D is the minimal
HTC Schnyder wood with respect to f0.

5.8 The Lattice of HTC Schnyder Woods

In this section, we push further the study of HTC Schnyder woods in order to remove
the root and the balanced property of the unicellular maps considered in thm 5.7.1
and obtain a simplified bijection in thm 5.9.1 of Section 5.9. The aim is to prove
that returning triangles is always sufficient to travel into the lattice. More detailed
proofs can be found in [Lévêque, 2016].

Consider a toroidal triangulation G given with a crossing Schnyder wood. Let D0

be the corresponding 3-orientation of G. Let f0 be any face of G. Recall from Sec-
tion 2.4.4 that O(G) denotes the set of all the orientations of G that are homologous
to D0. The elements of O(G) are the HTC Schnyder woods of G and (O(G),≤f0) is
a distributive lattice.

We need to reduce the graph G. We call an edge of G rigid with respect to
O(G) if it has the same orientation in all the elements of O(G). Rigid edges do not
play a role for the structure of O(G). We delete them from G and call the obtained

embedded graph G̃. Note that this graph is embedded but it is not necessarily a
map, as some faces may not be homeomorphic to open disks. Note also that G̃ might
be empty if all the edges are rigid, i.e. |O(G)| = 1 and G̃ has no edge but a unique
face that is all the surface.

Lemma 5.8.1. Given an edge e of G, the following are equivalent:

1. e is non-rigid

2. e is contained in a null-homologous oriented subgraph of D0

3. e is contained in a null-homologous oriented subgraph of any element of O(G)

Proof. (1 =⇒ 3) Let D ∈ O(G). If e is non-rigid, then it has a different orientation
in two elements D′, D′′ of O(G). Then we can assume by symmetry that e has a
different orientation in D and D′ (otherwise in D and D′′ by symmetry). Since D,D′

are homologous to D0, they are also homologous to each other. So T = D \D′ is a
null-homologous oriented subgraph of D that contains e.

(3 =⇒ 2) Trivial since D0 ∈ O(G)
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(2 =⇒ 1) If an edge e is contained in a null-homologous oriented subgraph T of
D0. Then let D be the element of O(G) such that T = D0 \D. Clearly e is oriented
differently in D and D0, thus it is non-rigid.

By Lemma 5.8.1, one can build G̃ by keeping only the edges that are contained in
a null-homologous oriented subgraph of D0. Note that this implies that all the edges
of G̃ are incident to two distinct faces of G̃. Denote by F̃ the set of oriented subgraphs
of G̃ corresponding to the boundaries of faces of G̃ considered counterclockwise. Let
f̃0 be the face of G̃ containing f0 and F̃0 be the element of F̃ corresponding to the
boundary of f̃0. Let F̃ ′ = F̃ \ F̃0. The elements of F̃ ′ are sufficient to generate the
entire lattice (O(G),≤f0), i.e. two elements D,D′ of O(G) are linked in the Hasse

diagram of the lattice, with D ≤f0 D′, if and only if D \D′ ∈ F̃ ′.

Lemma 5.8.2. For every element F̃ ∈ F̃ there exists D in O(G) such that F̃ is an
oriented subgraph of D.

Proof. Let F̃ ∈ F̃ . Let D be an element of O(G) that maximize the number of edges

of F̃ that have the same orientation in F̃ and D (i.e. that maximize the number of

edges of D oriented counterclockwise on the border of the face of G̃ corresponding
to F̃ ). Suppose by contradiction that there is an edge e of F̃ that does not have the

same orientation in F̃ and D. Edge e is in G̃ so it is non-rigid. Let D′ ∈ O(G) such
that e is oriented differently in D and D′. Let T = D \D′. There exists edge-disjoint
oriented subgraphs T1, . . . , Tk of D such that T =

∑
1≤i≤k Ti, and, for 1 ≤ i ≤ k,

there exists X̃i ⊆ F̃ ′ and εi ∈ {−1, 1} such that Ti = εi
∑

F̃ ′∈X̃i
∂(F̃ ′). Without loss

of generality, we can assume that e is an edge of T1. Let D′′ be the element of O(G)

such that T1 = D \D′′. The oriented subgraph T1 intersects F̃ only on edges of D

oriented clockwise on the border of F̃ . So D′′ contains strictly more edges oriented
counterclockwise on the border of the face F̃ than D, a contradiction. So all the
edges of F̃ have the same orientation in D. So F̃ is a null-homologous oriented
subgraph of D.

By Lemma 5.8.2, for every element F̃ ∈ F̃ ′ there exists D in O(G) such that F̃ is

an oriented subgraph of D. Thus there exists D′ such that F̃ = D \D′ and D,D′ are

linked in the Hasse diagram of the lattice. Thus the elements of F̃ ′ form a minimal
set that generates the lattice.

Let Dmax (resp. Dmin) be the maximal (resp. minimal) element of (O(G),≤f0).

Lemma 5.8.3. F̃0 (resp. −F̃0) is an oriented subgraph of Dmax (resp. Dmin).
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Proof. By Lemma 5.8.2, there exists D in O(G) such that F̃ is an oriented subgraph

of D. Let T = D \Dmax. Since D ≤f0 Dmax, T =
∑

F̃∈F̃ ′ λF∂(F̃ ) with λ ∈ N|F ′|. So

T is disjoint from F̃0. Thus F̃0 is an oriented subgraph of Dmax. The proof is similar
for Dmin.

Note that the above three lemmas hold in a more general context than just O(G).
Actually they hold for any lattice of homologous orientations on an oriented surface
(see [Lévêque, 2016]). From now on we use some specific properties of the object
considered in this chapter, i.e. HTC Schnyder woods.

Lemma 5.8.4. Consider an orientation D in O(G) and a closed walk W of G̃. If

on the left (resp. right) side of W , there is no incident edges of G̃, and no outgoing
incident edges of D, then W is a contractible triangle with its contractible region on
its left (resp. right) side.

Proof. Consider a closed walk W of G̃ such that on its left side there is no incident
edge of G̃, and no outgoing incident edges of D. Let k be the length of W . Let Wleft

be the edges of D that are incident to the left side of W . By assumption they are all
entering W . Note that W cannot cross itself otherwise it has at least one incident
edge of G̃ on its left side. However it may have repeated vertices but in that case it
intersects itself tangencially on the right side.

Suppose first that W is non-contractible. Then consider the closed walk W ∗ of
the dual orientation D∗ that is obtained by considering all the dual edges of Wleft

with their corresponding orientation. Since all the edges of Wleft are entering W we
have that W ∗ is an oriented closed walk. Moreover it is non-contractible and thus
contains an oriented non-contractible cycle, a contradiction to Lemma 2.4.23. So W
is contractible. Since W can intersect itself only tangencially on the right side, the
region delimited by W and located on its left side is connected.

Suppose that W has its contractible region on its left side. Consider the graph G′

obtained from G by keeping only the vertices and edges that lie in the contractible
region delimited by W , including W . The vertices of W appearing several times are
duplicated so thatG′ is a plane triangulation of a k-cycle. Let n′,m′, f ′ be the number
of vertices, edges and faces of G′. By Euler’s formula, n′−m′+ f ′ = 2. All the inner
faces have size 3 and the outer face has size k, so 2m′ = 3(f ′ − 1) + k. All the inner
vertices have outdegree 3 as we are considering a 3-orientation of G. All the edges
of Wleft are oriented toward W , and there are k outer edges, so m′ = 3(n′ − k) + k.
Combining these three equalities gives k = 3, i.e. W is a triangle and the lemma
holds.
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Suppose now that W has its contractible region on its right side. Then similarly
as above, consider the graph G′ obtained from G by keeping all the vertices and
edges that lie in the contractible region delimited by W , including W . This time
the vertices of W appearing several times are not duplicated. Since W can intersect
itself only tangencially on the right side, we have that G′ is a plane map whose outer
face boundary is W and whose interior is triangulated. As above, let n′,m′, f ′ be the
number of vertices, edges and faces of G′. By Euler’s formula, n′ −m′ + f ′ = 2. All
the inner faces have size 3 and the outer face has size k, so 2m′ = 3(f ′−1)+k. Since
there is no outgoing incident edges of D on the left side of W , all the vertices of G′

have outdegree 3 and m′ = 3n′. Combining these three equalities gives k = −3, a
contradiction.

The boundary of a face of G̃ may be composed of several closed walks. Let us
call quasi-contractible the faces of G̃ that are homeomorphic to a disk or to a disk
with punctures. Note that such a face may have several boundaries (if there is some
punctures) and then the face is not contractible, but exactly one of these boundaries
contains all the other in its contractible region. Let us call outer facial walk this
special boundary. Then we have the following:

Lemma 5.8.5. All the faces of G̃ are quasi-contractible and their outer facial walk
is a (contractible) triangle.

Proof. Suppose by contradiction that there is a face f̃ of G̃ that is not quasi-
contractible or whose outer facial walk is not a contractible triangle. Let F̃ be
the element of F̃ corresponding to the boundary of f̃ . By Lemma 5.8.2, there exists
an orientation D in O(G) such that F̃ is an oriented subgraph of D.

All the faces of G, are contractible triangles. Thus f̃ is not a face of G and
contains in its interior at least one edge of G. Start from any such edge e and
consider the left-walk W = (ei)i≥0 of D obtained by the following: if the edge ei is
entering a vertex v, then ei+1 is choosen among the three edges leaving v as the edge
that is on the left coming from ei (i.e. the first one while going clockwise around

v). Suppose that for i ≥ 0, edge ei is entering a vertex v that is on the border of f̃ .

Recall that by definition F̃ is oriented counterclockwise according to its interior, so
either ei+1 is in the interior of f̃ or ei+1 is on the border of f̃ . Thus W cannot leave
f̃ .

Since G has a finite number of edges, some edges are used several times in W .
Consider a minimal subsequence W ′ = ek, . . . , e` such that no edge appears twice
and ek = e`+1. Thus W ends periodically on the sequence of edges ek, . . . , e`. By
Lemma 5.8.4, all the closed walks that are part of F̃ have some outgoing incident



180 CHAPTER 5. BIJECTIONS FOR TOROIDAL TRIANGULATIONS

edges of D on their left side. Thus we have that W ′ contains at least one edge that
is not an edge of F̃ , thus it contains at least one rigid edge.

By construction, all the edges on the left side of W ′ are entering. Suppose that
W ′ is not contractible. Then the oriented closed walk of the dual orientation D∗

that is obtained by considering all the dual edges of its incident edges on the left
side gives a contradiction to Lemma 2.4.23. So W ′ is contractible. So it is a null-
homologous oriented subgraph of D, thus all its edges are non-rigid by Lemma 5.8.1,
a contradiction.

By Lemma 5.8.5, every face of G̃ is quasi-contractible and its outer facial walk
is a contractible triangle. So G̃ contains all the contractible triangles of G whose
interiors are maximal by inclusion, i.e. it contains all the edges that are not in the
interior of a separating triangle. In particular, G̃ is non-empty and |O(G)| ≥ 2. The
status (rigid or not) of an edge lying inside a separating triangle is determined as in
the planar case: such an edge is rigid if and only if it is in the interior of a separating
triangle and incident to this triangle. Thus an edge of G is rigid if and only if it is
in the interior of a separating triangle and incident to this triangle.

Since (O(G),≤f0) is a distributive lattice, any element D of O(G) that is distinct
from Dmax and Dmin contains at least one neighbor above and at least one neighbor
below in the Hasse diagram of the lattice. Thus it has at least one face of G̃ oriented
counterclockwise and at least one face of G̃ oriented clockwise. Thus by Lemma 5.8.5,
it contains at least one contractible triangle oriented counterclockwise and at least
one contractible triangle oriented clockwise. Next lemma shows that this property
is also true for Dmax and Dmin.

Lemma 5.8.6. In Dmax (resp. Dmin) there is a counterclockwise (resp. clockwise)
contractible triangle containing f0, and a clockwise (resp. counterclockwise) con-
tractible triangle not containing f0.

Proof. By Lemma 5.8.5, f̃0 is quasi-contractible and its outer facial walk is a con-
tractible triangle T . By lemma 5.8.3, F̃0 is an oriented subgraph of Dmax. Thus T
is oriented counterclockwise and contains f0. The second part of the lemma is clear
since |O(G)| ≥ 2 so Dmax has at least one neighbor below in the Hasse diagram of
the lattice. Similarly for Dmin.

Thus by above remarks and Lemma 5.8.6, all the HTC Schnyder woods have
at least one triangle oriented counterclockwise and at least one triangle oriented
clockwise. Note that this property does not characterize HTC Schnyder woods.
Figure 53 gives an example of a Schnyder wood that is not HTC but satisfies the
property. Note also that not all Schnyder woods satisfy the property. The right of
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Figure 51 is an example of a Schnyder wood that is no HTC and has no oriented
contractible triangle.

Lemma 5.8.6 is used in the next section to obtained a bijection with unrooted
unicellular maps.

5.9 Bijection with Unrooted Unicellular Maps

To remove the root and the balanced property of the unicellular maps considered in
Theorem 5.7.1, we have to root the toroidal triangulation more precisely than before.
We say that a corner is not in the clockwise interior of a separating triangle
if it is not in its contractible region, or if it is incident to a vertex v of the triangle
and situated just before an edge of the triangle in counterclockwise order around v
(see Figure 98).

Figure 98: Angles that are in a separating triangle but not in its clockwise interior.

Consider a toroidal triangulation G. Consider a root corner c0 that is not in the
clockwise interior of a separating triangle. Note that the choice of c0 is equivalent
to the choice of a root vertex v0 and a root edge e0 incident to v0 such that none
is in the interior of a separating triangle. Consider the orientation of the edges of
G corresponding to the minimal HTC Schnyder wood with respect to the root face
f0. By Lemma 5.8.6, there is a clockwise triangle containing f0. Thus by the choice
of c0, the edge e0 is leaving the root vertex v0. This is the essential property used
in this section. Consider the output U of Algorithm PS on (G, c0). Since e0 is
leaving v0 and c0 is just before e0 in counterclockwise order around v0, the execution
of Algorithm PS starts by Case 2 and e0 corresponds in U to a stem s0 attached
to v0. We call this stem s0 the root stem.

The recovering method defined in thm 5.4.1 says that s0 is the last stem reat-
tached by the procedure. So there exists a sequence of admissible triples of U (see the
terminology and notations of Section 5.4) such that s0 belongs to the last admissible
triple. Let U0 = U and for 1 ≤ k ≤ 2n − 2, the map Uk is obtained from Uk−1 by
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closing any admissible triple that does no contain s0. As noted in Section 5.4, the
special face of U2n−2 is a quadrangle with exactly one stem. This stem being s0, we
are in the situation of Figure 99.

Figure 99: The situation just before the last stem (i.e. the root stem) is reattached

Consequently, if one removes the root stem s0 from U to obtain an unicellular
map U ′ with n vertices, n+1 edges and 2n−2 stems, one can recover the graph U2n−2

by applying a complete closure procedure on U ′ (see example of Figure 100). Note
that then, there are four different ways to finish the closure of U2n−2 to obtain an
oriented toroidal triangulation. This four cases correspond to the four ways to place
the (removed) root stem in a quadrangle, they are obtained by pivoting Figure 99
by 0, π

2
, π and 3π

2
. Note that only one of this four cases leads to the original

rooted triangulation G, except if there are some symmetries (like in the example of
Figure 100).

Let U(n) denote the set of (non-rooted) toroidal unicellular maps, with exactly n
vertices, n+ 1 edges and 2n− 2 stems satisfying the following: a vertex has exactly
2 stems if it is not a corner, 1 stem if it is the corner of a hexagon and 0 stem if
it is the corner of a square. Note that the output of thm 5.3.1 on an appropriately
rooted toroidal triangulation is an element of U(n) when the root stem is removed.

Note that an element U ′ of U(n) is non-rooted so we cannot orient automatically
its edges with respect to the root corner like in Section 5.7. Nevertheless one can
still orient all the stems as outgoing and compute γ on the cycles of U ′ by considering
only its stems in the counting (and not the edges nor the root stem anymore). We
say that an unicellular map of U(n) satisfies the γ0 property if γ equals zero on its
(non-contractible) cycles. Let us call Uγ0(n) the set of elements of U(n) satisfying
the γ0 property.

A surprising property is that an element U ′ of U(n) satisfies the γ0 property if
and only if any element U of Ur(n) obtained from U ′ by adding a root stem anywhere
in U ′ satisfies the γ0 property (note that in U we count the edges and the root stem
to compute γ). One can see this by considering the unicellular map of Figure 101.
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Figure 100: Example of K7 where the root corner, the root stem and the orientation
with respect to the root corner have been removed from the output of Figure 88.
The complete closure procedure leads to a quadrangular face.

It represents the general case of the underlying rooted hexagon of U . The edges
represent in fact paths (some of which can be of length zero). One can check that
it satisfies γ equals zero on its (non-contractible) cycles. It corresponds exactly to
the set of edges that are taken into consideration when computing γ on U but not
when computing γ on U ′. Thus it does not affect the counting (the tree-like parts
are not represented since they do not affect the value γ). So the output of thm 5.3.1
on an appropriately rooted toroidal triangulation is an element of Uγ0(n) when the
root stem is removed.

For the particular case of K7, the difference between the rooted output of Fig-
ure 88 and the non-rooted output of Figure 100 is represented on Figure 102 (one
can superimpose the last two to obtain the first). One can check that these three
unicellular maps (rooted, non-rooted and the difference) all satisfy γ equals zero on
their cycles.

There is an “almost” four-to-one correspondence between toroidal triangulations
on n vertices, given with a root corner that is not in the clockwise interior of a
separating triangle, and elements of Uγ0(n). The “almost” means that if the auto-
morphism group of an element U of Uγ0(n) is not trivial, some of the four ways to
add a root stem in U are isomorphic and lead to the same rooted triangulation. In
the example of Figure 100, one can root in four ways the quadrangle but this gives
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Figure 101: The parts of the unicellular map showing the correspondence while
computing γ with or without the orientation with respect to the root plus the root
stem.
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Figure 102: The difference between the rooted output of Figure 88 and the non-
rooted output of Figure 100.

only two different rooted triangulations (because of the symmetries of K7). We face
this problem by defining another class for which we can formulate a bijection.

Let T (n) be the set of toroidal maps on n vertices, where all the faces are triangles,
except one that is a quadrangle and which is not in a separating triangle. Then we
have the following bijection:



5.9. BIJECTION WITH UNROOTED UNICELLULAR MAPS 185

Theorem 5.9.1. There is a bijection between T (n) and Uγ0(n).

Proof. Let a (for “add”) be an arbitrarily chosen mapping defined on the maps G′ of
T (n) that adds a diagonal e0 in the quadrangle of G′ and roots the obtained toroidal
triangulation G at a vertex v0 incident to e0 (this defines the root corner c0 situated
just before e0 in counterclockwise order around v0). Note that the added edge cannot
create a separating 2-cycle, since otherwise the quadrangle would be in a separating
triangle. Moreover the root corner of G is not in the clockwise interior of a separating
triangle. Thus the image of a is in T ′r (n), the subset of Tr(n) corresponding to toroidal
triangulations rooted at an corner that is not in the clockwise interior of a separating
triangle.

Let U ′r,b,γ0(n) be the elements of Ur,b,γ0(n) that have their root corner just before
a stem in counterclockwise order around the root vertex. Consider the mapping
g, defined in the proof of thm 5.7. By above remarks and thm 5.7, the image of
g restricted to T ′r (n) is in U ′r,b,γ0(n). Let r (for “remove”) be the mapping that
associates to an element of U ′r,b,γ0(n) an element of Uγ0(n) obtained by removing the
root corner and its corresponding stem. Finally, let h = r ◦ g ◦ a which associates to
an element of T (n) an element of Uγ0(n). Let us show that h is a bijection.

Consider an element G′ of T (n) and its image U ′ by h. The complete closure
procedure on U ′ gives G′ thus the mapping h is injective.

Conversely, consider an element U ′ of Uγ0(n). Apply the complete closure pro-
cedure on U ′. At the end of this procedure, the special face is a quadrangle whose
corners are denoted α1, . . . , α4. We denote also by α1, . . . , α4 the corresponding cor-
ners of U ′. For i ∈ {1, . . . , 4}, let U i be the element of Ur(n) obtained by adding a
root stem and a root corner in the corner αi of U ′, with the root corner just before
the stem in counterclockwise order around the root vertex. Note that by the choice
of αi, the U i are all balanced. By above remarks they also satisfy the γ0 property
and thus they are in U ′r,b,γ0(n).

By the proof of thm 5.7.1, the complete closure procedure on U i gives a trian-
gulation Gi of Tr(n) that is rooted from a corner ci0 not in the strict interior of a
separating triangle and oriented according to the minimal HTC Schnyder wood with
respect to the root face. Moreover the output of Algorithm PS applied on (Gi, ci0)
is U i. Since in U i, the root stem is present just after the root corner, the first edge
seen by the execution of Algorithm PS on (Gi, ci0) is outgoing. So c0 is not in the
clockwise interior of a separating triangle (in a 3-orientation, all the edges that are
in the interior of a separating triangle and incident to the triangle are entering the
triangle). Thus the Gi are appropriately rooted and are elements of T ′r (n). Removing
the root edge of any Gi, gives the same map G′ of T (n). Exactly one of the Gi is the
image of G′ by the mapping a. Thus the image of G′ by h is U ′ and the mapping h
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is surjective.

A nice aspect of Theorem 5.9.1 comparing to Theorem 5.7.1 is that the unicellular
maps that are considered are much simpler. They have no root nor balanced property
anymore. It would be great to use Theorem 5.9.1 to count and sample toroidal
triangulations. The main issue comparing to the planar case seems to be the γ0

property.

5.10 Conclusion

Note that the work presented here is related to a work of Bernardi and Chapuy
[Bernardi and Chapuy, 2011] (their convention for the orientation of the edges is the
reverse of ours). Consider a map G (not necessarily a triangulation) on an oriented
surface of genus g, rooted at a particular corner c0. An orientation of G is right if for
each edge e, the right-walk starting from e (when entering a vertex, the next chosen
edge is the one leaving on the right) reaches the root edge e0 via the root vertex v0.
A consequence of [Bernardi and Chapuy, 2011] is that Algorithm PS applied on
an orientation of (G, c0) outputs a spanning unicellular submap U if and only if the
considered orientation is right. Note that in this characterization, the submap U
is not necessarily a map of genus g, its genus can be any value in {0, . . . , g}. In
the particular case of toroidal triangulations we show that by considering minimal
HTC Schnyder woods the output U is a toroidal spanning unicellular map. Hence by
the above characterization, minimal HTC Schnyder woods are right. But here, the
fact that U and G have the same genus is of particular interest as it yields a simple
bijection.

The key property that makes U and G have same genus is the conclusion of
Lemma 2.4.23 (no oriented non-null-homologous cycle in the dual orientation). Re-
cently, [Albar et al., 2014] proved the following:

Theorem 5.10.1 ([Albar et al., 2014]). A simple triangulation on a genus g ≥
1 orientable surface admits an orientation of its edges such that every vertex has
outdegree at least 3, and divisible by 3.

Theorem 5.10.1 is proved for simple triangulation but we believe it to be true
for all triangulations. Moreover we hope for a possible generalization satisfying the
conclusion of Lemma 2.4.23:

Conjecture 5.10.2. A triangulation on a genus g ≥ 1 orientable surface admits an
orientation of its edges such that every vertex has outdegree at least 3, divisible by 3,
and such that there is no oriented non-null-homologous cycle in the dual orientation.
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If Conjecture 5.10.2 is true, one can consider a minimal orientation satisfying its
conclusion and apply Algorithm PS to obtain a unicellular map of the same genus
as G. Note that more efforts should be made to obtain a bijection since there might
be several minimal elements satisfying the conjecture and a particular one has to be
identified (as the minimal HTC Schnyder wood in our case).
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Conclusion

In this thesis, we looked at three different problems. We step back from our results
and give some thoughts about it. We also recall some open problems relative to each
subject. A more detailed description is given at the end of each chapter.

Geometric Intersection Numbers

The study of systems of quads led us to the algorithms of Chapter 3. Those algo-
rithms are very simple and can be easily implemented using classical data-structures.
Seen from above the idea is naturally described in a continuous setting. Let us as-
sume that we have an input curve on some surface of genus at least two. The usual
approach is to first provide the underlying surface with a hyperbolic metric. In a
second time, the input curve is tightened with respect to this metric. What we obtain
is a curve that minimizes the number of self-intersections. In the discrete setting the
hyperbolic metric is replaced by a systems of quads with angles as described in the
preliminary Section 2.3.5. The discrete tightening uses a canonical representative as
already introduced by Lazarus and Rivaud for the test of homotopy.

At this point, the input curve is represented by a canonical combinatorial geodesic.
As opposed to the continuous case, however, the most involved part is to count the
number of crossings of our geodesic representative. The point is that the combina-
torial geodesic is far from being in general position; a crossing may correspond to a
pair of homotopic subpaths with alternate ends (see Section 3.6). The exact counting
relies on a precise study of the geodesic paths in the system of quads. In particular
we observe that all the homotopic geodesics are contained in a tube of width at most
one edge. The two sides of the tube are the two canonical representative of the curve
according to its orientation. It gives an intuitive notion of thick geodesic that retains
the main properties of hyperbolic geodesics.

This leads to our quadratic algorithm for counting the geometric intersection
number of a curve or of a pair of curves. Although the geometric intersection num-

189
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ber could obviously be quadratic, it is not clear that this algorithm is optimal. In
particular, one could expect an output sensitive algorithm. This is somehow the case
when dealing with curves homotopic to simple curves. Indeed, we are able to decide
in quasi-linear time whether the geometric intersection number of a curve is 0 or
not. Moreover, our algorithm provides a combinatorial embedding (i.e. an immer-
sion without crossing) in the affirmative. Computing such a minimal immersion in
the general case seems even more delicate. Our quartic algorithm for computing a
minimal immersion of a single curve can probably be improved. Using our approach
with bigon swapping, it is not clear how to reduce the complexity or even to extend
the computation to a pair of curves. In this respect, we note that no polynomial
time algorithm is known. A natural and promising approach is to check whether our
algorithm for simple curves would output minimal immersions in the general case.
We leaves this as an open problem.

Splitting Cycles

In some sense, our counter-example to Mohar and Thomassen conjecture was not
hidden. Trying any one of the triangulations by a big enough complete graph would
have worked. The point is that the big enough part is a real issue that may require
years of computation. Our coloring heuristic made the result. The idea of testing the
conjecture against complete triangulations was already suggested by Ellingham and
Stephens in their 2005 paper. The fact that no one tried to test the conjecture clearly
shows that the critical point is the algorithm complexity. Our heuristic happened to
be very efficient for searching splitting cycles in complete triangulations. However,
the behavior of our algorithm when applied to general maps is not known. It is
probably a good choice in many cases, in particular for dense graphs. We conjecture
a polynomial time algorithm parametrized by some function of the minimum degree
of the graph such as the ratio between the total number of vertices and the minimum
degree.

The interest of the chapter is not only the counter-example but also the structural
view of triangulations of complete graphs it provides. An informal conjecture can be
given: a triangulation of a complete graph cannot have many splitting cycles of type
more or less balanced. More precisely, we expect that the number of splitting cycles of
type t ∈ [α g

2
, g

2
] for some constant α to be determined is very small. Considering our

experimental results that there exists an embedding of K19 with a balanced splitting
cycle. In the affirmative, it would be interesting to give an explicit construction.

It suggests an idea to deal with that problem. It seem plausible that there is
only a very small proportion of embeddings of Kn on a genus (n−3)(n−4)

12
surface
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than are obtained by gluing two embeddings of genus around (n−3)(n−4)
24

with one
boundary. Some convergence estimations are known for the size of many families of
triangulated maps. This alone cannot be enough, it is necessary to take into account
that a splitting cycle of a triangulation of a complete graph must cut a part without
interior vertices, in particular all the edges of this part are either boundary edges or
chords. The other part should also contain many chords so that most of the gluing of
such parts will create multiple edges. This would disprove the conjecture by a purely
theoretical approach. However, it cannot lead to a proof that a specific triangulation
avoids a given type of splitting cycle.

Bijection for Toroidal Triangulations

The key point of toroidal Schnyder woods is not their definition or the proof of their
existence. It is the definition of the canonical element as the minimal element of the
HTC or γ0 lattice. In addition, it is possible to compute this minimal element in
linear time. Note that all this work has been possible because Daniel Gonçalves and
Benjamin Lévêque kept on trying to find new proofs of existence of Schnyder woods
and of each of their results. The good definitions and proofs that can be carried to
genus higher than 1 are not known by now but the various approaches they described
can all be useful.

In our proof of the bijection for the torus we have tried to avoid arguments specific
to genus 1. In the planar case, it has been proved that the canonical triangulation
have all the properties that make Poulhalon and Schaeffer algorithm run as expected.
In the torus case, we prove that the canonical element also makes Poulhalon and
Schaeffer algorithm work by analogous arguments as in the plane with the additional
requirement that there is no oriented cycles in the dual. In this thesis, I tried to
analyze which properties are preserved or not when going from the plane to the
torus. I think that it remains to understand the meaning of the vertices of outdegree
greater than 3 to obtain a direct generalization of all the work on the torus to maps
of higher genus.

For the torus case there remains many things to do. I claim that the bijection
of Chapter 5 is the certificate that most of the implications of Schnyder woods in
the planar case can be extended to the torus. The first thing to do is probably to
count toroidal triangulations via our bijection with decorated unicellular maps. This
would make possible to do uniform sampling as in the plane. There is probably a
price to pay for partitioning and counting toroidal triangulations in order to obtain an
accurate uniform sampling with the appropriate coefficients. Those coefficients can
be precomputed. If the cost is too high, an approximation formula can be envisioned.
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célébration d’un article de Max Dehn de 1910. Gazette des mathématiciens,
125:41–75.

Dehn, M. (1912). Transformation der kurven auf zweiseitigen flächen. Mathematische
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unzip algorithm, 110

accessibility, 144
action, 27
adjacent transposition, 48
admissible triple, 157
ambient isotopy, 30
angle defect, 33
atlas, 25
automorphisms, 34

backward, 77
balanced corner, 160
Betti numbers, 130
bigon, 75, 91
bracket, 52

cellular, 39
closed staircase, 79
closed subset, 23
closure, 157
combinatorial crossing number, 77
combinatorial geodesics, 52
combinatorial self-crossing number, 77
complete closure, 157
configurations, 30, 101
contractible, 163
contractible curve, 29

contraction, 163
corner graph, 146, 147
covering sheets, 33
covering space, 33
crossing, 77
crossing double path, 86
crossing Schnyder Woods, 64
curvature, 32
cut and paste, 76
cut vertex, 79
cycle trees, 135
cycles, 43

difference, 64
double point, 77
double-path, 85

edge-path, 43
edges, 36, 38
elementary homotopy, 48
elementary move, 48
embedding, 38, 109

facial walk, 39
final tip, 79
flag, 40
forward, 77
free group, 27

general triangulation, 38
generators, 27
generators and relations, 27
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genus, 28
geodesic, 31
geometric intersection number, 71
geometric self-intersection number, 71
good position, 48
group, 26

half-crossing, 65
half-edges, 40
Hasse diagram, 27
homeomorphism, 23
HTC Schnyder woods, 65
hyperbolic metric, 33
hyperbolic translation, 35

ideal triangles, 33
image path, 77
immersion, 25
index path, 77
initial tip, 79

join, 27

lattice, 27
left-walk, 171
lift, 33, 83
loop edges, 38

Möbius transformations, 35
maximal double path, 86
maximal partial diagram, 101
meet, 27
monogon, 91
multiple edges, 38

next-face, 147
next-vertex, 147

occurrence, 44
open subsets, 23
orbit, 27

outer facial walk, 171

pairwise distinct, 86
partial diagram, 101
partially monochromatic, 137
planar graph, 39
previous-face, 147
previous-vertex, 147
primitive curves, 73

quasi-contractible, 171

radial graph, 50
reduced map, 49
reduced word, 27
Riemannian manifold, 25
Riemannian metric, 25
right-walk, 178
rigid, 168
root stem, 173
rotation scheme, 39

separating triangle, 150
sides, 91
simple closed curves, 75
simple graph, 38
simplicial complex, 42
simply connected, 29, 34
singular, 93
singular bigon, 75
singular monogon, 75
spanning, 151
special edges, 161
special face, 57, 156
splitting cycle, 121
spoke, 80
surfaces, 28
switchable, 109

thick double path, 101
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tips, 91
transition maps, 25
tree-cotree decomposition, 41
triangle, 150
turn sequence, 52
type, 122

unicellular maps, 62
universal cover, 34

vertices, 36, 38
voltage, 131

weak bigon, 75


