# Vincent DESPRÉ

Postdoc at INRIA Nancy, team Gamble,

PhD in Computer Science,

Agrégé of Mathématics,

CV.

Contact info - Publications - PhD Thesis - Talks - Projects - Teaching

### Contact Info

email: vincent "dot" despre "at" inria "dot" fr

Lab: INRIA, Nancy, France.

Address: Bureau B172, 615 Rue du Jardin botanique, 54600 Villers-lès-Nancy.

### Publications

with Francis Lazarus: Computing the Geometric Intersection Number of Curves, SoCG 2017, Slides.

with Francis Lazarus: Some Triangulated Surfaces without Balanced Splitting, Graphs and Combinatorics (2016) 32: 2339. doi:10.1007/s00373-016-1735-6, Code, Slides.

with Daniel Gonçalves and Benjamin Lévèque: Encoding Toroidal Triangulations, Discrete & Computational Geometry (2016). doi:10.1007/s00454-016-9832-0, Slides.

#### Submitted

avec Nicolas Bonichon, Prosenjit Bose, Jean-Lou De Carufel, Darryl Hill et Michiel Smid: Improved Routing on the Delaunay Triangulation.

#### Award

Best Paper Award SoCG 2017: Computing the Geometric Intersection Number of Curves.

### PhD Thesis

Manuscript. Slides.

Titre: Topology and Algorithms on Combinatorial Maps.

defended on 18th October 2016.

Under the supervision of Francis Lazarus and András Sebő.

Jury: Olivier Devillers (President), Xavier Goaoc (Reviewer), Stefan Felsner (Rewiever), Francis Lazarus, András Sebő, Nicolas Bonichon, Sergio Cabello, Stéphan Thomassé, Imre Bárány.

Abstract ▼.

### Talks

05/04/2017:
EuroCG

21/03/2017:
Seminar at Marne la Vallée

09/03/2017:
Seminar at ENS Lyon

26/01/2017:
JCB 2017

25/11/2016:
Seminar at Labri

09/09/2016:
Seminar at Labri

11/02/2016:
Seminar at Clermont-Fd

14/12/2015:
Seminar at Marseille

16/11/2015:
JGA 2015 Cargèse

05/11/2015:
JGA 2015 Orléans

02/04/2015:
Seminar at Lirmm

23/11/2014:
Bordeaux Graph Workshop

### Projects

Astonishing: Site du projet.

ASsociate Team On Non-ISH euclIdeaN Geometry.

Code of the randomised version of the splitting cycle conjecture.

Stint: Site du projet.

Forbidden Structures.

Galois: website.

Geometric Methods in Combinatoric, Combinatorial Algorithms for Geometry.

Barnette's Conjecture in orientable genus 2 and non-orientable genus 3 and 4: Code.

Summary of experimental results on this problem: Summary.

### Teaching

Network for L3.

Logic and Proof for L3.

Architecture of computers for L2.

Python for L1.

Object Oriented Programming for L3.

C for L1 (first year in university): Summary, Exercises.