scottishflag - Français


PCV

Vincent DESPRÉ

Postdoc at INRIA Nancy, team Gamble,
PhD in Computer Science,
Agrégé of Mathématics,
CV.


Contact info - Publications - PhD Thesis - Talks - Projects - Teaching


Contact Info

email: vincent "dot" despre "at" inria "dot" fr
Lab: INRIA, Nancy, France.
Address: Bureau B172, 615 Rue du Jardin botanique, 54600 Villers-lès-Nancy.



Publications

with Francis Lazarus: Computing the Geometric Intersection Number of Curves, SoCG 2017, Slides.

with Francis Lazarus: Some Triangulated Surfaces without Balanced Splitting, Graphs and Combinatorics (2016) 32: 2339. doi:10.1007/s00373-016-1735-6, Code, Slides.

with Daniel Gonçalves and Benjamin Lévèque: Encoding Toroidal Triangulations, Discrete & Computational Geometry (2016). doi:10.1007/s00454-016-9832-0, Slides.

In preparation

avec Nicolas Bonichon, Prosenjit Bose, Jean-Lou De Carufel, Darryl Hill et Michiel Smid: A Routing Algorithm for Delaunay Triangulations.

Award

Best Paper Award SoCG 2017: Computing the Geometric Intersection Number of Curves.


PhD Thesis

Manuscript. Slides.
Titre: Topology and Algorithms on Combinatorial Maps.
defended on 18th October 2016.
Under the supervision of Francis Lazarus and András Sebő.
Jury: Olivier Devillers (President), Xavier Goaoc (Reviewer), Stefan Felsner (Rewiever), Francis Lazarus, András Sebő, Nicolas Bonichon, Sergio Cabello, Stéphan Thomassé, Imre Bárány.

Abstract ▼.



Talks

05/04/2017: EuroCG

21/03/2017: Seminar at Marne la Vallée

09/03/2017: Seminar at ENS Lyon

26/01/2017: JCB 2017

25/11/2016: Seminar at Labri

09/09/2016: Seminar at Labri


11/02/2016: Seminar at Clermont-Fd

14/12/2015: Seminar at Marseille

16/11/2015: JGA 2015 Cargèse

05/11/2015: JGA 2015 Orléans

02/04/2015: Seminar at Lirmm

23/11/2014: Bordeaux Graph Workshop



Projects

Astonishing: Site du projet.
ASsociate Team On Non-ISH euclIdeaN Geometry.

Stint: Site du projet.
Forbidden Structures.

Galois: website.
Geometric Methods in Combinatoric, Combinatorial Algorithms for Geometry.
Barnette's Conjecture in orientable genus 2 and non-orientable genus 3 and 4: Code.
Summary of experimental results on this problem: Summary.



Teaching

Network for L3.
Logic and Proof for L3.
Architecture of computers for L2.
Python for L1.
Object Oriented Programming for L3.
C for L1 (first year in university): Summary, Exercises.